Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2006_8_9A_3-1_a2, author = {Bellomo, Nicola}, title = {Nuova {Frontiera} della {Ricerca} {Matematica} nelle {Scienze} {Mediche} e {Biologiche} {Immunologia} e {Oncologia} {Matematica}}, journal = {Bollettino della Unione matematica italiana}, pages = {415--448}, publisher = {mathdoc}, volume = {Ser. 8, 9A}, number = {3-1}, year = {2006}, zbl = {1195.00011}, language = {it}, url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9A_3-1_a2/} }
TY - JOUR AU - Bellomo, Nicola TI - Nuova Frontiera della Ricerca Matematica nelle Scienze Mediche e Biologiche Immunologia e Oncologia Matematica JO - Bollettino della Unione matematica italiana PY - 2006 SP - 415 EP - 448 VL - 9A IS - 3-1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2006_8_9A_3-1_a2/ LA - it ID - BUMI_2006_8_9A_3-1_a2 ER -
%0 Journal Article %A Bellomo, Nicola %T Nuova Frontiera della Ricerca Matematica nelle Scienze Mediche e Biologiche Immunologia e Oncologia Matematica %J Bollettino della Unione matematica italiana %D 2006 %P 415-448 %V 9A %N 3-1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2006_8_9A_3-1_a2/ %G it %F BUMI_2006_8_9A_3-1_a2
Bellomo, Nicola. Nuova Frontiera della Ricerca Matematica nelle Scienze Mediche e Biologiche Immunologia e Oncologia Matematica. Bollettino della Unione matematica italiana, Série 8, 9A (2006) no. 3-1, pp. 415-448. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9A_3-1_a2/
[1] Uses and abuses of mathematics in biology, Science, 303 (2004), 790-793.
,[2] From molecular to modular cell biology, Nature, 402 (1999), c47-c52.
, , e ,[3] Why is mathematical biology so hard?, Notices of the American Mathematical Society, 51 (2004), 338-342. | Zbl
,[4] A question of scale, Nature, 418 (2004), 131.
,[5] Evolutionary dynamics in carcinogenesis, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1619-1638. | Zbl
, e ,[6] Evolutionary dynamics of biological games, Science, 303 (2004), 793-799.
e ,[7] Dynamics of tumor interaction with the host immune system, Mathematical Computer Modelling, 20 (1994), 107-122. | Zbl
e ,[8] Tumor Heterogeneity and progression: conceptual foundation for modeling, Invasion and Metastasis, 16 (1996), 177-208.
, e ,[9] ADAM J. e BELLOMO N., Eds., A Survey of Models on Tumor Immune Systems Dynamics, Birkhäuser, Boston, (1997).
[10] PREZIOSI L., Ed., Modeling Cancer Growth, CRC-Press - Chapman Hall, Boca Raton, (2003). | Zbl
[11] CHAPLAIN M.A.J., Ed., Special Issue on Mathematical Modelling and Simulation of Aspects of Cancer Growth, Journal of Theoretical Medicine, 1 (2002), 1-93.
[12] Preface and Special issue on Multiscale Cancer Modelling - A New Frontier in Applied Mathematics, Mathematical Models and Methods in Applied Sciences, 15 (2005), iii-viii.
e ,[13] Multiscale modeling and mathematical problems related to tumor evolution and medical therapy, Journal of Theoretical Medicine, 5 (2003), 111-136. | fulltext EuDML | Zbl
, e ,[14] Modeling immunotherapy of the tumor-immune interaction, J. Mathematical Biology, 37 (1998), 235-252. | Zbl
e ,[15] A mathematical model of cancer treatment by immunotherapy, Mathematical Biosciences, 163 (2000), 159-199. | Zbl
e ,[16] Tumor-immune system interaction and immunotherapy: Modelling the tumor-stimulated proliferation of effectors, Mathematical Models and Methods in Applied Sciences, 16 (2006).
,[17] A nonlinear structured population model of tumour growth with quiescence, J. Mathematical Biology, 28 (1990), 671-684. | Zbl
e ,[18] Long-range predicability in midels of cell populations subjected to phase-specific drugs: Growth-rate approximation using properties of positive compact operators, Mathematical Models and Methods in Applied Sciences, 16 (2006). | Zbl
, e ,[19] Existence of solution of the cell division eigenproblem, Mathematical Models and Methods in Applied Sciences, 16 (2006). | Zbl
,[20] Kinetic (cellular) models of cell progression and competition with the immune system, Z. Agnewande Mathematical Physics, 55 (2004), 295-317. | Zbl
e ,[21] Analysis of a new model for tumor-immune system competition including long time scale effects, Mathematical Models and Methods in Applied Sciences, 14 (2004), 1657-1682. | Zbl
,[22] Mathematical model of tumor invasion along linear or tubular structures, Mathematical Computer Modelling, 41 (2005), 1083-1096. | Zbl
, , e ,[23] Mathematical topics on the modelling of multicellular systems in the competition between tumor and immune cells, Mathematical Models and Methods in Applied Sciences, 14 (2004), 1683-1733. | Zbl
, e ,[24] Mathematical methods and tools of kinetic theory towards modelling complex biological systems, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1639-1666. | Zbl
e ,[25] Looking for new paradigms towards a biological-mathematical theory of complex multicellular systems, Mathematical Models and Methods in Applied Sciences, 16 (2006). | Zbl
e ,[26] Models for the growth of a solid tumour by diffusion, J. Theoretical Biology, 52 (1972), 317-340. | Zbl
,[27] Equilibrium model of a vascularized spherical carcinoma with central necrosis, J. Mathematical Biology, 31 (1993), 735-745. | Zbl
e ,[28] From mutation to metastasis: The mathematical modelling of the stages of tumor development, in J. Adam and N. Bellomo, Eds., A Survey of Models on Tumor Immune Systems Dynamics (Birkhäuser, Boston, 1997), 187-236.
,[29] Spatio-temporal heterogeneity arising in a mathematical model of cancer invasion of tissue, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1735-1734.
e ,[30] A weakly nonlinear analysis of a model of avascular solid tumour growth, J. Mathematical Biology, 33 (1999), 59-89. | Zbl
,[31] Advection diffusion models for solid tumours in vivo and related free-boundary problems, Mathematical Models and Methods in Applied Sciences, 10 (2000), 379-408. | Zbl
e ,[32] Role of angiogenesis in tumor growth and methastasis, Seminars in Oncology, 29 (2002), 15-18.
,[33] Super-rough dynamics on tumor growth, Physical Review Letters, 81 (1998), 4008-4011.
, , , , e ,[34] On the closure of mass balance models for tumour growth, Mathematical Models and Methods in Applied Sciences, 12 (2002), 737-754. | Zbl
e ,[35] A mathematical model for tumor cords incorporating the flow of interstitial fluids, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1735-1778. | Zbl
, e ,[36] The diffusion limit of transport equations II: chemotaxis equations, SIAM J. Applied Mathematics, 62 (2002), 1222-1250. | Zbl
e ,[37] Model hierarchies for cell aggregation by chemotaxis, Mathematical Models and Methods in Applied Sciences, 16 (2006). | Zbl
, , , , e ,[38] The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particles systems, SIAM J. Applied Mathematics, 61 (2002), 183-212. | Zbl
,[39] Micro and meso scales of description corresponding to a model of tissue invasion by solid tumors, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1667-1684. | Zbl
,[40] On the onset of nonlinearity for diffusion models of binary mixtures of biological materials by asymptotic analysis, International J. Nonlinear Mechanics, 41 (2006), 281-293. | Zbl
e ,[41] From discrete kinetic and stochastic game theory to modeling complex systems in applied sciences, Mathematical Models and Methods in Applied Sciences, 14 (2004), 1061-1084. | Zbl
e ,[42] Modelling Complex Biological Systems - A Kinetic Theory Approach (Birkhäuser, Boston, 2006). | Zbl
e ,[43] Mathematical modeling of tumor-induced angiogenesis, J. Mathematical Biology, 47 (2004), 111-187. | Zbl
, e ,[44] Modelling the response of vascular tumours to chemotherapy: a multiscale approach, Mathematical Models and Methods in Applied Sciences, 16 (2006). | Zbl
, , e ,[45] A system approach to dissecting immunity and inflammation, Seminars in Immunology, 16 (2004), 55-67.
e ,[46] Analysis of a mathematical model of tumor growth, J. Mathematical Biology, 47 (1999), 391-423. | Zbl
e ,[47] Analysis of a mathematical model of tumor lymphangiogenesis, Mathematical Models and Methods in Applied Sciences, 15 (2005), 95-107. | Zbl
e ,[48] À chaque cancer son scénario aléatoire, La Récherche, 390 (2005), 73.
[49] A new biology for a new century, Microbiology and Molecular Biology Reviews, 68 (2004), 173-186.
,[50] Mathematical oncology: Cancer summed up, Nature, 421 (2003), 321-323.
e ,