Nonlinear parabolic equations with natural growth in general domains
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 653-683

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove an existence result for a class of parabolic problems whose principal part is the $p$-Laplace operator or a more general Leray-Lions type operator, and featuring an additional first order term which grows like $|\nabla u |^{p}$. Here the spatial domain can have infinite measure, and the data may be not regular enough to ensure the boundedness of solutions. As a consequence, solutions are obtained in a class of functions with exponential integrability. An existence result of bounded solutions is also given under additional hypotheses.
@article{BUMI_2005_8_8B_3_a8,
     author = {Dall'aglio, A. and Giachetti, D. and Puel, J.-P.},
     title = {Nonlinear parabolic equations with natural growth in general domains},
     journal = {Bollettino della Unione matematica italiana},
     pages = {653--683},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {3},
     year = {2005},
     zbl = {1117.35035},
     mrnumber = {MR2182422},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a8/}
}
TY  - JOUR
AU  - Dall'aglio, A.
AU  - Giachetti, D.
AU  - Puel, J.-P.
TI  - Nonlinear parabolic equations with natural growth in general domains
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 653
EP  - 683
VL  - 8B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a8/
LA  - en
ID  - BUMI_2005_8_8B_3_a8
ER  - 
%0 Journal Article
%A Dall'aglio, A.
%A Giachetti, D.
%A Puel, J.-P.
%T Nonlinear parabolic equations with natural growth in general domains
%J Bollettino della Unione matematica italiana
%D 2005
%P 653-683
%V 8B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a8/
%G en
%F BUMI_2005_8_8B_3_a8
Dall'aglio, A.; Giachetti, D.; Puel, J.-P. Nonlinear parabolic equations with natural growth in general domains. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 653-683. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a8/