Symmetries and Kähler-Einstein metrics
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 605-613

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider Fano manifolds $M$ that admit a collection of finite automorphism groups $G_1, \ldots, G_k$ , such that the quotients $M/G_i$ are smooth Fano manifolds possessing a Kähler-Einstein metric. Under some numerical and smoothness assumptions on the ramification divisors, we prove that $M$ admits a Kähler-Einstein metric too.
@article{BUMI_2005_8_8B_3_a4,
     author = {Arezzo, Claudio and Ghigi, Alessandro},
     title = {Symmetries and {K\"ahler-Einstein} metrics},
     journal = {Bollettino della Unione matematica italiana},
     pages = {605--613},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {3},
     year = {2005},
     zbl = {1178.53040},
     mrnumber = {MR2182418},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a4/}
}
TY  - JOUR
AU  - Arezzo, Claudio
AU  - Ghigi, Alessandro
TI  - Symmetries and Kähler-Einstein metrics
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 605
EP  - 613
VL  - 8B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a4/
LA  - en
ID  - BUMI_2005_8_8B_3_a4
ER  - 
%0 Journal Article
%A Arezzo, Claudio
%A Ghigi, Alessandro
%T Symmetries and Kähler-Einstein metrics
%J Bollettino della Unione matematica italiana
%D 2005
%P 605-613
%V 8B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a4/
%G en
%F BUMI_2005_8_8B_3_a4
Arezzo, Claudio; Ghigi, Alessandro. Symmetries and Kähler-Einstein metrics. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 605-613. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a4/