Some results in Lagrangian mechanics
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 591-603.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We associate to a dynamic equation $\xi$ three different connections and then we consider the meaning of the vanishing of their curvatures. Some peculiarities of the case of autonomous dynamic equation polynomial in the velocities $\dot{q}$ are pointed out. Finally, using the so-called Helmholtz conditions, we investigate a particular example.
Associamo ad un'equazione dinamica $\xi$ tre differenti connessioni e quindi consideriamo il significato dell'annullarsi della loro curvatura. Alcune peculiarità del caso di equazione dinamica autonoma polinomiale nelle velocità $\dot{q}$ vengono evidenziate. Finalmente, usando le cosiddette condizioni di Helmholtz, indaghiamo un particolare esempio.
@article{BUMI_2005_8_8B_3_a3,
     author = {Fiorani, Emanuele},
     title = {Some results in {Lagrangian} mechanics},
     journal = {Bollettino della Unione matematica italiana},
     pages = {591--603},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {3},
     year = {2005},
     zbl = {1150.70011},
     mrnumber = {515141},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a3/}
}
TY  - JOUR
AU  - Fiorani, Emanuele
TI  - Some results in Lagrangian mechanics
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 591
EP  - 603
VL  - 8B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a3/
LA  - en
ID  - BUMI_2005_8_8B_3_a3
ER  - 
%0 Journal Article
%A Fiorani, Emanuele
%T Some results in Lagrangian mechanics
%J Bollettino della Unione matematica italiana
%D 2005
%P 591-603
%V 8B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a3/
%G en
%F BUMI_2005_8_8B_3_a3
Fiorani, Emanuele. Some results in Lagrangian mechanics. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 591-603. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a3/

[1] R. Abraham - J. Marsden, Foundations of mechanics (II ed.), Benjamin & Cummings, London, 1978. | MR | Zbl

[2] G. Giachetta - L. Mangiarotti - G. Sardanashvily, New Lagrangian and Hamiltonian methods in field theories, World Scientific, Singapore, 1997. | MR | Zbl

[3] D. Saunders, The geometry of jet bundles, Cambridge University Press, Cambridge, 1989. | MR | Zbl

[4] M. Crampin, On the differential geometry of the Euler-Lagrange equations and the inverse problem of Lagrangian dynamics, J. Phys. A: Math. Gen., 14 (1981), 2567-2575. | MR | Zbl

[5] M. Crampin - G. F. Prince - G. Thompson, A geometrical version of the Helmholtz conditions in time-dependent Lagrangian mechanics, J. Phys. A: Math. Gen., 17 (1984), 1437-1447. | MR | Zbl

[6] M. Crampin - E. Martínez - W. Sarlet, Linear connections for systems of second order ordinary differential equations, Ann. Inst. Henri Poincaré, 65 (1996), 223-249. | fulltext mini-dml | MR | Zbl

[7] G. Giachetta, Jet methods in nonholonomic mechanics, J. Math. Phys., 33 (1992), 1652-1665. | MR | Zbl

[8] P. Havas, Four-dimensional formulations of Newtonian mechanics and their relation to the special and general theory of relativity, Rev. Modern Phys., 36 (1964), 938-965. | MR | Zbl

[9] E. Massa - E. Pagani, Jet bundle geometry, dynamical connections and the inverse problem of Lagrangian mechanics, Ann. Inst. Henri Poincaré, 61 (1994), 17-62. | fulltext mini-dml | MR | Zbl