Recent developments in wavelet methods for the solution of PDE's
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 569-590.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

After reviewing some of the properties of wavelet bases, and in particular the property of characterisation of function spaces via wavelet coefficients, we describe two new approaches to, respectively, stabilisation of numerically unstable PDE's and to non linear (adaptive) solution of PDE's, which are made possible by these properties.
Dopo aver ricordato alcune delle proprietà delle basi di wavelets, ed in particolare la proprietà di caratterizzazione di spazi funzionali tramite coefficienti wavelet, descriviamo due nuovi approcci rispettivamente alla stabilizzazione di problemi numericamente instabili ed alla soluzione nonlineare (adattativa) di equazioni differenziali alle derivate parziali, che sono resi possibili da dette proprietà.
@article{BUMI_2005_8_8B_3_a2,
     author = {Bertoluzza, Silvia},
     title = {Recent developments in wavelet methods for the solution of {PDE's}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {569--590},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {3},
     year = {2005},
     zbl = {0808.42019},
     mrnumber = {1244602},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a2/}
}
TY  - JOUR
AU  - Bertoluzza, Silvia
TI  - Recent developments in wavelet methods for the solution of PDE's
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 569
EP  - 590
VL  - 8B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a2/
LA  - en
ID  - BUMI_2005_8_8B_3_a2
ER  - 
%0 Journal Article
%A Bertoluzza, Silvia
%T Recent developments in wavelet methods for the solution of PDE's
%J Bollettino della Unione matematica italiana
%D 2005
%P 569-590
%V 8B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a2/
%G en
%F BUMI_2005_8_8B_3_a2
Bertoluzza, Silvia. Recent developments in wavelet methods for the solution of PDE's. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 569-590. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a2/

[1] N. Hall B. Jawerth Andersson L. - G. Peters, Wavelets on closed subsets of the real line, Technical report, 1993. | MR | Zbl

[2] C. Baiocchi - F. Brezzi, Stabilization of unstable methods, in P.E.Ricci, editor, Problemi attuali dell’Analisi e della Fisica Matematica, Università «La Sapienza», Roma, 1993. | MR

[3] S. Bertoluzza, Wavelets for the numerical solution of the stokes equation, in Proc. of IMACS ’97 World Conference, Berlin, August 24-29, 1997, 1997, to appear.

[4] S. Bertoluzza, Stabilization by multiscale decomposition, Appl. Math. Lett., 11(6) (1998), 129-134. | MR | Zbl

[5] S. Bertoluzza, Analysis of a stabilized three fields domain decomposition method, Technical Report 1175, I.A.N.-C.N.R., 2000, Numer. Math., to appear. | MR | Zbl

[6] S. Bertoluzza, Wavelet stabilization of the Lagrange multiplier method, Numer. Math., 86 (2000), 1-28. | MR | Zbl

[7] S. Bertoluzza - C. Canuto - A. Tabacco, Stable discretization of convection-diffusion problems via computable negative order inner products, SINUM, 38 (2000), 1034-1055. | MR | Zbl

[8] S. Bertoluzza - A. Kunoth, Wavelet stabilization and preconditioning for domain decomposition, I.M.A. Jour. Numer. Anal., 20 (2000), 533-559. | MR | Zbl

[9] S. Bertoluzza - M. Verani, Convergence of a non-linear wavelet algorithm for the solution of PDE’s, Appl. Math. Lett., to appear. | MR | Zbl

[10] S. Bertoluzza - S. Mazet - M. Verani, A nonlinear richardson algorithm for the solution of elliptic PDE’s, M3AS, 2003. | MR | Zbl

[11] J. H. Bramble - R. D. Lazarov - J. E. Pasciak, A least square approach based on a discrete minus one product for first order systems, Technical Report BNL-60624, Brookhaven National Laboratory, 1994.

[12] F. Brezzi - M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, 1991. | MR | Zbl

[13] C. Canuto - A. Tabacco - K. Urban, The wavelet element method. II. Realization and additional features in 2D and 3D, Appl. Comput. Harmon. Anal., 8, 2000. | MR | Zbl

[14] A. Cohen - W. Dahmen - R. De Vore, Multiscale decomposition on bounded domains, preprint. | Zbl

[15] A. Cohen - W. Dahmen - R. De Vore, Adaptive wavelet methods for elliption operator equations – convergence rates, Technical report, IGPM - RWTH-Aachen, 1998, to appear in Math. Comp. | MR | Zbl

[16] A. Cohen - I. Daubechies - P. Vial, Wavelets on the interval and fast wavelet transforms, ACHA, 1 (1993), 54-81. | MR | Zbl

[17] A. Cohen - R. Masson, Wavelet adaptive method for second order elliptic problems: boundary conditions and domain decomposition, Numer. Math., 86(2) (2000), 193-238. | MR | Zbl

[18] S. Dahlke - R. Hochmut - K. Urban, Adaptive wavelet methods for saddle point problems, Technical Report 1126, IAN-CNR, 1999. | fulltext mini-dml | MR | Zbl

[19] W. Dahmen, Stability of multiscale transformations, Journal of Fourier Analysis and Applications, 2(4) (1996), 341-361. | MR | Zbl

[20] W. Dahmen - A. Kunoth - R. Schneider, Wavelet least square methods for boundary value problems, Siam J. Numer. Anal., 2002. | MR | Zbl

[21] W. Dahmen - C. A. Michelli, Using the refinement equation for evaluating integrals of wavelets, SIAM J. Numer. Anal., 30 (1993), 507-537. | MR | Zbl

[22] W. Dahmen - R. Schneider, Composite wavelet bases for operator equations, Math. Comp., 68(228) (1999), 1533-1567. | MR | Zbl

[23] I. Daubechies, Ten lectures on wavelets, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. | MR | Zbl

[24] R. A. Devore, Nonlinear approximation, Acta Numerica, 1998. | MR | Zbl

[25] R. A. Devore - B. Jawerth - V. Popov, Compression of wavelet decomposition, Amer. J. Math, 114, 1992. | MR | Zbl

[26] Y. Maday - V. Perrier - J. C. Ravel, Adaptivité dynamique sur bases d’ondelettes pour l’approximation d’équations aux derivées partielles, C. R. Acad. Sci Paris, 312 (Série I), (1991), 405-410. | MR | Zbl

[27] Y. Meyer, Wavelets and operators, in IngridDaubechies, editor, Different Perspectives on Wavelets, volume 47 of Proceedings of Symposia in Applied Mathematics, pages 35-58, American Math. Soc., Providence, RI, 1993. From an American Math. Soc. short course, Jan. 11-12, 1993, San Antonio, TX. | MR | Zbl

[28] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North Holland, 1978. | MR | Zbl