Mean values of convexly arranged numbers and monotone rearrangements in reverse integral inequalities
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 737-764.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We analyse mean values of functions with values in the boundary of a convex two-dimensional set. As an application, reverse integral inequalities imply exactly the same inequalities for the monotone rearrangement. Sharp versions of the classical Gehring lemma, the Gurov-Resetnyak theorem and the Muckenhoupt theorem are obtained.
Si studiano medie di funzioni con valori sulla frontiera di un insieme convesso bidimensionale. Come applicazione si prova che disuguaglianze integrali inverse implicano esattamente le stesse disuguaglianze per il riordinamento monotono. Si ottengono quindi versioni ottimali del classico lemma di Gehring, del teorema di Gurov-Reshetnyak e del teorema di Muckenhoupt.
@article{BUMI_2005_8_8B_3_a13,
     author = {Clemens, Werner},
     title = {Mean values of convexly arranged numbers and monotone rearrangements in reverse integral inequalities},
     journal = {Bollettino della Unione matematica italiana},
     pages = {737--764},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {3},
     year = {2005},
     zbl = {1115.26016},
     mrnumber = {1076164},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a13/}
}
TY  - JOUR
AU  - Clemens, Werner
TI  - Mean values of convexly arranged numbers and monotone rearrangements in reverse integral inequalities
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 737
EP  - 764
VL  - 8B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a13/
LA  - en
ID  - BUMI_2005_8_8B_3_a13
ER  - 
%0 Journal Article
%A Clemens, Werner
%T Mean values of convexly arranged numbers and monotone rearrangements in reverse integral inequalities
%J Bollettino della Unione matematica italiana
%D 2005
%P 737-764
%V 8B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a13/
%G en
%F BUMI_2005_8_8B_3_a13
Clemens, Werner. Mean values of convexly arranged numbers and monotone rearrangements in reverse integral inequalities. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 737-764. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a13/

[ApSb90] L. D'Apuzzo - C. Sbordone , Reverse Hölder Inequalities - A sharp Result, Rend. di Matematica, (Ser. 7), 10 (1990), 357-366. | MR | Zbl

[BeSh88] C. Bennett - R. Sharpley , Interpolation of Operators, Academic Press 1988, Pure and Applied Mathematics, 129. | MR | Zbl

[Boj85] B. Bojarski , Remarks on the stability of reverse Hölder inequalities and quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A.I. Math., 10 (1985), 89- 94. | MR | Zbl

[BoIw83] B. Bojarski - T. Iwaniec , Analytical foundation of the theory of quasiconformal mappings in $\mathbb{R}^n$, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 8 (1983), 257-324. | MR | Zbl

[Fio96] A. Fiorenza , Regularity Results for Minimizers of Certain One-Dimensional Lagrange Problems of Calculus of Variations, Bollettino U.M.I., (7) 10B (1996), 943-962, | MR | Zbl

[FrMo85] M. Franciosi - G. Moscariello , Higher integrability results, Manuscripta Math., 52 (1985), 151-170. | MR | Zbl

[GaRu85] C. Garcia-Cuerva - J. L. Rubio De Francia , Weighted norm inequalities and related topics, North-Holland Math. Studies, 116 (1985). | MR | Zbl

[Geh73] F.W. Gehring , The $L^p$-integrability of the partial derivates of a quasiconformal mapping, Acta Math., 130 (1973), 265-277. | MR | Zbl

[Gia83] M. Giaquinta , Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Study, 105, Princeton Univ. Press (1983). | MR | Zbl

[Gia93] M. Giaquinta , Introduction to regularity theory for nonlinear elliptic systems Birkhäuser Verlag, Basel, Boston, Berlin 1993. | MR | Zbl

[GuRe76] L. G. Gurov - Yu. K. Resetnyak , A certain analogue of the concept of a function with bounded mean oscillation Sibirsk., Math. Zh., 17, 3 (1976), 540- 546. | MR | Zbl

[Iwa82] T. Iwaniec , On $L^p$-integrability in PDE's and quasiregular mappings for large exponents, Ann. Acad. Sci. Fenn. Ser. A. I., 7 (1982), 301-322. | MR | Zbl

[Iwa98] T. Iwaniec , The Gehring Lemma, Proc. of the int. Symp., Ann Arbor, MI, USA (1998), 181-204. | MR | Zbl

[IwMa01] T. Iwaniec - G. Martin , Geometric function theory and non-linear analysis, Oxford Math. Mono., Oxford Univ. Press, Oxford, 2001. | MR | Zbl

[Kle85] I. Klemes , A mean oscillation inequality, Proc. Am. Math. Soc., 93, Nr. 3 (1985), 497-500. | MR | Zbl

[Kin94] J. Kinnunen , Sharp results on reverse Hölder inequalities, Ann. Acad. Sci. Fenn., Ser. A, 1. Mathematica, Dissert., 95 (1994), 4-34. | MR | Zbl

[Kol89] V.I. Kolyada , Rearrangements of functions and imbedding theorems, Russ. Math. Surv., 44, No. 5 (1989), 73-117. | MR | Zbl

[Kor92a] A. A. Korenovskij , The exact continuation of a reverse Hölder inequality and Muckenhoupt's conditions, Math. notes, 52, No. 6 (1992), 1192-1201. | MR | Zbl

[Kor92b] A. A. Korenovskij , On the connection between mean value oscillation and exact integrability classes of functions, Math. USSR Sbornik, 71, No. 2 (1992), 561-567; transl. from Mat. Sb., 181, No. 12 (1990), 1721-1727. | MR | Zbl

[Muc72] B. Muckenhoupt , Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226. | MR | Zbl

[Nan90] L. Nania , On some reverse integral inequalities, J. Austral. Math. Soc. (Ser. A) 49 (1990), 319-326. | MR | Zbl

[Sag94] H. Sagan , Space-filling curves, Springer Verlag, New York, 1994. | MR | Zbl

[Sbo86] C. Sbordone , On some integral inequalities and their applications to the calculus of variations, Boll. Un. Mat. Ital., Ana. Func. Appl., 5-10(6,1) (1986), 73-94. | MR | Zbl

[Ste93] E. M. Stein , Harmonic analysis: Real-variable methods, orthogonality and oscillatory integrals. Princeton Math. Series, 43, Princeton, New Jersey 1993. | MR | Zbl

[Wik90] I. Wik , Reverse Hölder inequalities with constant close to 1, Ric. Mat., 39, No. 1 (1990), 151-157. | MR | Zbl