Mean values of convexly arranged numbers and monotone rearrangements in reverse integral inequalities
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 737-764
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We analyse mean values of functions with values in the boundary of a convex two-dimensional set. As an application, reverse integral inequalities imply exactly the same inequalities for the monotone rearrangement. Sharp versions of the classical Gehring lemma, the Gurov-Resetnyak theorem and the Muckenhoupt theorem are obtained.
@article{BUMI_2005_8_8B_3_a13,
author = {Clemens, Werner},
title = {Mean values of convexly arranged numbers and monotone rearrangements in reverse integral inequalities},
journal = {Bollettino della Unione matematica italiana},
pages = {737--764},
publisher = {mathdoc},
volume = {Ser. 8, 8B},
number = {3},
year = {2005},
zbl = {1115.26016},
mrnumber = {MR2182427},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a13/}
}
TY - JOUR AU - Clemens, Werner TI - Mean values of convexly arranged numbers and monotone rearrangements in reverse integral inequalities JO - Bollettino della Unione matematica italiana PY - 2005 SP - 737 EP - 764 VL - 8B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a13/ LA - en ID - BUMI_2005_8_8B_3_a13 ER -
%0 Journal Article %A Clemens, Werner %T Mean values of convexly arranged numbers and monotone rearrangements in reverse integral inequalities %J Bollettino della Unione matematica italiana %D 2005 %P 737-764 %V 8B %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a13/ %G en %F BUMI_2005_8_8B_3_a13
Clemens, Werner. Mean values of convexly arranged numbers and monotone rearrangements in reverse integral inequalities. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 737-764. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a13/