Simplicity of generic Steiner bundles
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 723-735
A Steiner bundle $E$ on $\mathbb{P}^{n}$ has a linear resolution of the form $0 \rightarrow \mathcal{O}(-1)^{s}\rightarrow \mathcal{O}^{t}\rightarrow E \rightarrow 0$. In this paper we prove that a generic Steiner bundle $E$ is simple if and only if $\chi (\mathrm{End} E)$ is less or equal to 1. In particular we show that either $E$ is exceptional or it satisfies the inequality $t\leq \left( \frac{n+1+\sqrt{(n+1)^{2}-4}}{2} \right)s$.
@article{BUMI_2005_8_8B_3_a12,
author = {Brambilla, Maria Chiara},
title = {Simplicity of generic {Steiner} bundles},
journal = {Bollettino della Unione matematica italiana},
pages = {723--735},
year = {2005},
volume = {Ser. 8, 8B},
number = {3},
zbl = {1178.14009},
mrnumber = {MR2182426},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a12/}
}
Brambilla, Maria Chiara. Simplicity of generic Steiner bundles. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 723-735. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a12/