Curves of genus seven that do not satisfy the Gieseker-Petri theorem
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 697-706.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In the moduli space of curves of genus $g$, $\mathcal{M}_g$, let $\mathcal{GP}_g$ be the locus of curves that do not satisfy the Gieseker-Petri theorem. In the genus seven case we show that $\mathcal{GP}_7$ is a divisor in $\mathcal{M}_7$.
Nello spazio dei moduli delle curve di genere $g$, $\mathcal{M}_g$, indichiamo con $\mathcal{GP}_g$ il luogo delle curve che non soddisfano il teorema di Gieseker-Petri. In questo lavoro noi proviamo che nel caso di genere sette, $\mathcal{GP}_7$ è un divisore di $\mathcal{M}_7$.
@article{BUMI_2005_8_8B_3_a10,
     author = {Castorena, Abel},
     title = {Curves of genus seven that do not satisfy the {Gieseker-Petri} theorem},
     journal = {Bollettino della Unione matematica italiana},
     pages = {697--706},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {3},
     year = {2005},
     zbl = {1178.14024},
     mrnumber = {615613},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a10/}
}
TY  - JOUR
AU  - Castorena, Abel
TI  - Curves of genus seven that do not satisfy the Gieseker-Petri theorem
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 697
EP  - 706
VL  - 8B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a10/
LA  - en
ID  - BUMI_2005_8_8B_3_a10
ER  - 
%0 Journal Article
%A Castorena, Abel
%T Curves of genus seven that do not satisfy the Gieseker-Petri theorem
%J Bollettino della Unione matematica italiana
%D 2005
%P 697-706
%V 8B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a10/
%G en
%F BUMI_2005_8_8B_3_a10
Castorena, Abel. Curves of genus seven that do not satisfy the Gieseker-Petri theorem. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 697-706. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a10/

[1] E. Arbarello - M. Cornalba , Su una congettura di Petri, Comment. Math. Helvetici, 56 (1981) 1-38. | MR | Zbl

[2] E. Arbarello - M. Cornalba - P. Griffiths - J. Harris , Geometry of Algebraic Curves Volume I , Grundlehrem der Mathematischen Wissenschaften 267, Springer-Verlag 1984. | MR | Zbl

[3] D. Eisenbud - J. Harris , Irreducibility of some families of linear series with Brill-Noether Number $-1$, Ann. Scient. Ec. Norm. Sup. 4 série t. 22 (1989), 33-53. | fulltext mini-dml | MR | Zbl

[4] G. M. Greuel - G. Pfister - H Schöneman , Singular 2.0 A Computer Algebra System for Polinomial Computations, Centre for Computer Algebra, University of Kaiserslautern (2001), http://www.singular.uni-kl.de. | Zbl

[5] J. Harris - I. Morrison , Moduli of curves, Graduate texts in Mathematics 187, Springer-Verlag 1998. | MR | Zbl

[6] R. Hartshorne , Algebraic Geometry, Graduate texts in Mathematics 52, Springer-Verlag 1997. | MR | Zbl

[7] F. Steffen , A generalized principal ideal theorem with applications to Brill- Noether theory, Invent. Math. 132 (1998), 73-89. | MR | Zbl

[8] M. Teixidor I Bigas , half-canonical series on algebraic curves, Trans. Amer. Math. Soc. 302 (1987), 99-115. | MR | Zbl

[9] M. Teixidor I Bigas , The divisor of curves with a vanishing theta-null, Compositio Mathematica 66 (1988), 15-22. | fulltext mini-dml | MR | Zbl