Curves of genus seven that do not satisfy the Gieseker-Petri theorem
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 697-706
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
In the moduli space of curves of genus $g$, $\mathcal{M}_g$, let $\mathcal{GP}_g$ be the locus of curves that do not satisfy the Gieseker-Petri theorem. In the genus seven case we show that $\mathcal{GP}_7$ is a divisor in $\mathcal{M}_7$.
@article{BUMI_2005_8_8B_3_a10,
author = {Castorena, Abel},
title = {Curves of genus seven that do not satisfy the {Gieseker-Petri} theorem},
journal = {Bollettino della Unione matematica italiana},
pages = {697--706},
publisher = {mathdoc},
volume = {Ser. 8, 8B},
number = {3},
year = {2005},
zbl = {1178.14024},
mrnumber = {MR2182424},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a10/}
}
TY - JOUR AU - Castorena, Abel TI - Curves of genus seven that do not satisfy the Gieseker-Petri theorem JO - Bollettino della Unione matematica italiana PY - 2005 SP - 697 EP - 706 VL - 8B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a10/ LA - en ID - BUMI_2005_8_8B_3_a10 ER -
Castorena, Abel. Curves of genus seven that do not satisfy the Gieseker-Petri theorem. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 697-706. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a10/