Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2005_8_8B_3_a1, author = {Cannarsa, Piermarco}, title = {Funzioni semiconcave, singolarit\`a e pile di sabbia}, journal = {Bollettino della Unione matematica italiana}, pages = {549--567}, publisher = {mathdoc}, volume = {Ser. 8, 8B}, number = {3}, year = {2005}, zbl = {1182.49011}, mrnumber = {1760538}, language = {it}, url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a1/} }
Cannarsa, Piermarco. Funzioni semiconcave, singolarità e pile di sabbia. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 549-567. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a1/
[1] Structural properties of singularities of semiconcave functions, Annali Scuola Norm. Sup. Pisa Sci. Fis. Mat., 28 (1999), 719-740. | fulltext mini-dml | MR | Zbl
- ,[2] Propagation of singularities for solutions of nonlinear first order partial differential equations, Arch. Ration. Mech. Anal., 162 (2002), 1-23. | MR | Zbl
- ,[3] On the singularities of convex functions, Manuscripta Math., 76 (1992), 421-435. | MR | Zbl
- - ,[4] Optimal transport maps in Monge-Kantorovich problem, in Proceedings of the International Congress of Mathematicians, vol. III (Beijing 2002), Higher Ed. Press, Beijing, 2002, 131-140. | MR | Zbl
,[5] The porous medium equation, in Some problems on nonlinear diffusion (FasanoA. and PrimicerioM., Eds.), Lect. Notes Math. 1224, Springer, 1986, 1-46. | MR | Zbl
,[6] Optimal control and viscosity solutions of Hamilton-Jacobi equations, Birkhäuser, Boston, 1997. | MR | Zbl
- ,[7] (1991) Limits as $p \to \infty$ of $\Delta_p u_{p} = f$ and related extremal problems, Some topics in nonlinear PDEs (Turin, 1989). Rend. Sem. Mat. Univ. Politec. Torino, 1989, 15-68. | MR
- - ,[8] Characterization of optimal shapes and masses through Monge-Kantorovich equation, J. Eur. Math. Soc., 3, No. 2 (2001), 139-168. | MR | Zbl
- ,[9] Surface flows of granular mixtures, I. General principles and minimal model, J. Phys. I France, 6 (1996), 1295-1304.
- ,[10] Representation of equilibrium solutions to the table problem for growing sandpile, J. Eur. Math. Soc., 6 (2004), 1-30. | MR | Zbl
- ,[11] A boundary value problem for a PDE model in mass transfer theory: representation of solutions and applications, pre-print. | Zbl
- - - ,[12] The table problem for granular matter: regularity of solutions, pre-print.
- - ,[13] Semiconcave functions, Hamilton-Jacobi equations and optimal control, Birkhäuser, Boston, 2004. | MR | Zbl
- ,[14] Mathematical theory of medial axis transform, Pac. J. Math., 181 (1997), 57-88. | MR | Zbl
- - ,[15] Optimization and nonsmooth analysis, Wiley, New York, 1983. | MR | Zbl
,[16] The continuous dependence of generalized solutions of non-linear partial differential equations upon initial data, Comm. Pure Appl. Math., 14 (1961), 267-284. | MR | Zbl
,[17] Some remarks on the measurability of certain sets, Bull. Amer. Math. Soc., 51 (1945), 728-731. | fulltext mini-dml | MR | Zbl
,[18] Partial Differential Equations, A.M.S., Providence, 1998. | Zbl
,[19] Fast/slow diffusion and collapsing sandpiles, J. Differential Equations, 137, no. 1 (1997), 166-209. | MR | Zbl
- - ,[20] Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137, no. 653, 1999. | MR | Zbl
- ,[21] The Cauchy problem for a nonlinear first order partial differential equation, J. Diff. Eq., 5 (1969), 515-530. | MR | Zbl
,[22] A max-plus based algorithm for an HJB equation of nonlinear filtering, SIAM J. Control Optim., 38 (2000), 683-710. | MR | Zbl
- ,[23] Controlled Markov processes and viscosity solutions, Springer Verlag, Berlin, 1993. | MR | Zbl
- ,[24] Tubular neighborhoods in Euclidean spaces, Duke Math. J., 52 (1985), 1025-1046. | fulltext mini-dml | MR | Zbl
,[25] Dynamical models for granular matter, Granular Matter, 2 (1999), 9-18.
- ,[26] The Lipschitz continuity of the distance function to the cut locus, Trans. Am. Math. Soc., 353, No. 1 (2001), 21-40. | MR | Zbl
- ,[27] Behaviour in the limit, as $p \to +\infty$, of minimizers of functionals involving p-Dirichlet integrals, SIAM J. Math. Anal., 27, no. 2 (1996), 341-360. | MR | Zbl
,[28] The Cauchy problem in the large for certain nonlinear first order differential equations, Soviet. Math. Dokl., 1 (1960), 474-477. | MR | Zbl
,[29] The Cauchy problem in the large for nonlinear equations and for certain quasilinear systems of the first order with several variables, Soviet. Math. Dokl., 5 (1964), 493-496. | Zbl
,[30] Generalized solutions of the HamiltonJacobi equations of the eikonal type I, Math. USSR Sb., 27 (1975), 406-445. | Zbl
,[31] Optimal control theory for infinite-dimensional systems, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, 1995. | MR | Zbl
-[32] Generalized solutions of Hamilton-Jacobi equations, Pitman, Boston, 1982. | MR | Zbl
,[33] Sur quelques propriétés caractéristiques des ensembles convexes, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 21 (1935), 562-567. | Zbl
,[34] The distance function to the boundary, Finsler geometry and the singular set of viscosity solutions of some Hamilton-Jacobi equations, pre-print. | fulltext mini-dml | Zbl
- ,[35] Variational model of sandpile growth, European J. Appl. Math., 7, no. 3 (1996), 225-235. | MR | Zbl
,[36] Existence of Lipschitz and semiconcave control-Lyapunov functions, SIAM J. Control Optim., 39 (2000), 1043-1064. | MR | Zbl
,[37] Semiconcave control-Lyapunov functions and stabilizing feedbacks, SIAM J. Control Optim., 41 (2002), 659-681. | MR | Zbl
,[38] Favorable classes of Lipschitz continuous functions in subgradient optimization, in Progress in Nondifferential Optimization (NurminskiE., Ed.), IIASA Collaborative Proceedings Series, Laxenburg, 125 (1982). | MR | Zbl
,[39] On the points of multiplicity of monotone operators, Comment. Math. Univ. Carolin., 19 (1978), 179-189. | fulltext mini-dml | MR | Zbl
,[40] On the differentiation of convex functions in finite and infinite dimensional spaces, Czechoslovak Math. J., 29 (1979), 340-348. | fulltext mini-dml | MR | Zbl
,