Funzioni semiconcave, singolarità e pile di sabbia
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 549-567.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

La semiconcavità è una nozione che generalizza quella di concavità conservandone la maggior parte delle proprietà ma permettendo di ampliarne le applicazioni. Questa è una rassegna dei punti più salienti della teoria delle funzioni semiconcave, con particolare riguardo allo studio dei loro insiemi singolari. Come applicazione, si discuterà una formula di rappresentazione per la soluzione di un modello dinamico per la materia granulare.
Semiconcavity is a natural generalization of concavity that retains most of the good properties known in convex analysis, but arises in a wider range of applications. This is a survey of the main properties of semiconcave functions which emphasizes the study of singularities. An application to a dynamic model for granular matter will be discussed.
@article{BUMI_2005_8_8B_3_a1,
     author = {Cannarsa, Piermarco},
     title = {Funzioni semiconcave, singolarit\`a e pile di sabbia},
     journal = {Bollettino della Unione matematica italiana},
     pages = {549--567},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {3},
     year = {2005},
     zbl = {1182.49011},
     mrnumber = {1760538},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a1/}
}
TY  - JOUR
AU  - Cannarsa, Piermarco
TI  - Funzioni semiconcave, singolarità e pile di sabbia
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 549
EP  - 567
VL  - 8B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a1/
LA  - it
ID  - BUMI_2005_8_8B_3_a1
ER  - 
%0 Journal Article
%A Cannarsa, Piermarco
%T Funzioni semiconcave, singolarità e pile di sabbia
%J Bollettino della Unione matematica italiana
%D 2005
%P 549-567
%V 8B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a1/
%G it
%F BUMI_2005_8_8B_3_a1
Cannarsa, Piermarco. Funzioni semiconcave, singolarità e pile di sabbia. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 549-567. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a1/

[1] P. Albano - P. Cannarsa, Structural properties of singularities of semiconcave functions, Annali Scuola Norm. Sup. Pisa Sci. Fis. Mat., 28 (1999), 719-740. | fulltext mini-dml | MR | Zbl

[2] P. Albano - P. Cannarsa, Propagation of singularities for solutions of nonlinear first order partial differential equations, Arch. Ration. Mech. Anal., 162 (2002), 1-23. | MR | Zbl

[3] G. Alberti - L. Ambrosio - P. Cannarsa, On the singularities of convex functions, Manuscripta Math., 76 (1992), 421-435. | MR | Zbl

[4] L. Ambrosio, Optimal transport maps in Monge-Kantorovich problem, in Proceedings of the International Congress of Mathematicians, vol. III (Beijing 2002), Higher Ed. Press, Beijing, 2002, 131-140. | MR | Zbl

[5] D. G. Aronson, The porous medium equation, in Some problems on nonlinear diffusion (FasanoA. and PrimicerioM., Eds.), Lect. Notes Math. 1224, Springer, 1986, 1-46. | MR | Zbl

[6] M. Bardi - I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi equations, Birkhäuser, Boston, 1997. | MR | Zbl

[7] T. Bhattacharya - E. Di Benedetto - J. Manfredi, (1991) Limits as $p \to \infty$ of $\Delta_p u_{p} = f$ and related extremal problems, Some topics in nonlinear PDEs (Turin, 1989). Rend. Sem. Mat. Univ. Politec. Torino, 1989, 15-68. | MR

[8] G. Bouchitté - G. Buttazzo, Characterization of optimal shapes and masses through Monge-Kantorovich equation, J. Eur. Math. Soc., 3, No. 2 (2001), 139-168. | MR | Zbl

[9] T. Boutreux - P.-G. De Gennes, Surface flows of granular mixtures, I. General principles and minimal model, J. Phys. I France, 6 (1996), 1295-1304.

[10] P. Cannarsa - P. Cardaliaguet, Representation of equilibrium solutions to the table problem for growing sandpile, J. Eur. Math. Soc., 6 (2004), 1-30. | MR | Zbl

[11] P. Cannarsa - P. Cardaliaguet - G. Crasta - E. Giorgieri, A boundary value problem for a PDE model in mass transfer theory: representation of solutions and applications, pre-print. | Zbl

[12] P. Cannarsa - P. Cardaliaguet - E. Giorgieri, The table problem for granular matter: regularity of solutions, pre-print.

[13] P. Cannarsa - C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations and optimal control, Birkhäuser, Boston, 2004. | MR | Zbl

[14] H. I. Choi - S. W. Choi - H. P. Moon, Mathematical theory of medial axis transform, Pac. J. Math., 181 (1997), 57-88. | MR | Zbl

[15] F. H. Clarke, Optimization and nonsmooth analysis, Wiley, New York, 1983. | MR | Zbl

[16] A. Douglis, The continuous dependence of generalized solutions of non-linear partial differential equations upon initial data, Comm. Pure Appl. Math., 14 (1961), 267-284. | MR | Zbl

[17] P. Erdös, Some remarks on the measurability of certain sets, Bull. Amer. Math. Soc., 51 (1945), 728-731. | fulltext mini-dml | MR | Zbl

[18] L. C. Evans, Partial Differential Equations, A.M.S., Providence, 1998. | Zbl

[19] L. C. Evans - M. Feldman - R. Gariepy, Fast/slow diffusion and collapsing sandpiles, J. Differential Equations, 137, no. 1 (1997), 166-209. | MR | Zbl

[20] L. C. Evans - W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137, no. 653, 1999. | MR | Zbl

[21] Fleming W. H., The Cauchy problem for a nonlinear first order partial differential equation, J. Diff. Eq., 5 (1969), 515-530. | MR | Zbl

[22] Fleming W. H. - Mceneaney W. M., A max-plus based algorithm for an HJB equation of nonlinear filtering, SIAM J. Control Optim., 38 (2000), 683-710. | MR | Zbl

[23] W. H. Fleming - H. M. Soner, Controlled Markov processes and viscosity solutions, Springer Verlag, Berlin, 1993. | MR | Zbl

[24] J. H. G. Fu, Tubular neighborhoods in Euclidean spaces, Duke Math. J., 52 (1985), 1025-1046. | fulltext mini-dml | MR | Zbl

[25] K. P. Hadeler - C. Kuttler, Dynamical models for granular matter, Granular Matter, 2 (1999), 9-18.

[26] J. Itoh - M. Tanaka, The Lipschitz continuity of the distance function to the cut locus, Trans. Am. Math. Soc., 353, No. 1 (2001), 21-40. | MR | Zbl

[27] U. Janfalk, Behaviour in the limit, as $p \to +\infty$, of minimizers of functionals involving p-Dirichlet integrals, SIAM J. Math. Anal., 27, no. 2 (1996), 341-360. | MR | Zbl

[28] S. N. Kruzhkov, The Cauchy problem in the large for certain nonlinear first order differential equations, Soviet. Math. Dokl., 1 (1960), 474-477. | MR | Zbl

[29] S. N. Kruzhkov, The Cauchy problem in the large for nonlinear equations and for certain quasilinear systems of the first order with several variables, Soviet. Math. Dokl., 5 (1964), 493-496. | Zbl

[30] S. N. Kruzhkov, Generalized solutions of the Hamilton–Jacobi equations of the eikonal type I, Math. USSR Sb., 27 (1975), 406-445. | Zbl

[31] X. J. Li - J. M. Yong Optimal control theory for infinite-dimensional systems, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, 1995. | MR | Zbl

[32] P. L. Lions, Generalized solutions of Hamilton-Jacobi equations, Pitman, Boston, 1982. | MR | Zbl

[33] T. Motzkin, Sur quelques propriétés caractéristiques des ensembles convexes, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 21 (1935), 562-567. | Zbl

[34] Y. Y. Li - L. Nirenberg, The distance function to the boundary, Finsler geometry and the singular set of viscosity solutions of some Hamilton-Jacobi equations, pre-print. | fulltext mini-dml | Zbl

[35] L. Prigozhin, Variational model of sandpile growth, European J. Appl. Math., 7, no. 3 (1996), 225-235. | MR | Zbl

[36] Rifford L., Existence of Lipschitz and semiconcave control-Lyapunov functions, SIAM J. Control Optim., 39 (2000), 1043-1064. | MR | Zbl

[37] Rifford L., Semiconcave control-Lyapunov functions and stabilizing feedbacks, SIAM J. Control Optim., 41 (2002), 659-681. | MR | Zbl

[38] Rockafellar R. T., Favorable classes of Lipschitz continuous functions in subgradient optimization, in Progress in Nondifferential Optimization (NurminskiE., Ed.), IIASA Collaborative Proceedings Series, Laxenburg, 125 (1982). | MR | Zbl

[39] L. Zajaíček, On the points of multiplicity of monotone operators, Comment. Math. Univ. Carolin., 19 (1978), 179-189. | fulltext mini-dml | MR | Zbl

[40] L. Zajaíček, On the differentiation of convex functions in finite and infinite dimensional spaces, Czechoslovak Math. J., 29 (1979), 340-348. | fulltext mini-dml | MR | Zbl