Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2005_8_8B_3_a0, author = {Fusco, Nicola}, title = {Simmetrizzazione e disuguaglianze di tipo {P\`olya-Szeg\"o}}, journal = {Bollettino della Unione matematica italiana}, pages = {529--548}, publisher = {mathdoc}, volume = {Ser. 8, 8B}, number = {3}, year = {2005}, zbl = {1182.26050}, mrnumber = {1441395}, language = {it}, url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a0/} }
Fusco, Nicola. Simmetrizzazione e disuguaglianze di tipo Pòlya-Szegö. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 3, pp. 529-548. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_3_a0/
[1] Convex symmetrization and rearrangements, Ann. Inst. H. Poincaré, Anal. Non Linèaire, 14 (1997), 275-293. | fulltext mini-dml | MR | Zbl
- - - ,[2] Functions of bounded variation and free discontinuity problems, Oxford University Press, Oxford, 2000. | MR | Zbl
- - ,[3] A unified approach to symmetrization, in Partial differential equations of ellyptic type, A.Alvino, & eds., Symposia Math. 35, Cambridge Univ. Press, 1994. | MR | Zbl
,[4] A weighted isoperimetric inequality and applications to symmetrization, J. Ineq. Appl., 4 (1999), 215-240. | MR | Zbl
- - - ,[5] Weighted Dirichlet-type inequalities for Steiner Symmetrization, Calc. Var., 8 (1999), 15-25. | MR | Zbl
,[6] Minimal rearrangements of Sobolev functions, J. Reine. Angew. Math., 384 (1988), 153-179. | MR | Zbl
- ,[7] Steiner symmetrization is continuous in $W^{1, p}$, Geom. Funct. Anal., 7 (1997), 823-860. | MR | Zbl
,[8] Perimeter inequalities for Steiner symmetrization: cases of equalities, in corso di stampa su Annals of Mathematics.
- - ,[9] Second order derivatives and rearrangements, Duke Math. J., 105 (2000), 355-385. | fulltext mini-dml | MR | Zbl
,[10] Rearrangements of functions in Besov spaces, Math. Nachr., 230 (2001), 19-35. | MR | Zbl
,[11] Functions of bounded variation and rearrangements, Arch. Rat. Mech. Anal., 165 (2002), 1-40. | MR | Zbl
- ,[12] Steiner symmetric extremals in Pólya-Szegö type inequalities, preprint del Dip. Mat. e Appl. Univ. Napoli, n. 17 (2003). | MR | Zbl
- ,[13] Nuovi teoremi relativi alle misure (r-1)-dimensionali in uno spazio a r dimensioni, Ricerche Mat., 4 (1955), 95-113. | MR | Zbl
,[14] Sulla proprietà isoperimetrica dellipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I, 5 (1958), 33-44. | MR | Zbl
,[15] Inegalités isoperimetriques et integrales de Dirichlet gaussiennes, Ann. Sci. École Norm. Sup., 17 (1984), 317-332. | fulltext mini-dml | MR | Zbl
,[16] Convex symmetrization and Pólya-Szegö inequality, Nonlinear Anal., 56 (2004), 43-62. | MR | Zbl
- ,[17] Minimal rearrangements of Sobolev functions: a new proof, Ann. Inst. H.Poincaré, Anal. Nonlinéaire, 20 (2003), 333-339 | fulltext mini-dml | MR | Zbl
- ,[18] Convex symmetrization: the equality case in the Pólya-Szegö inequality, in corso di stampa su Calc. Var. and PDE's.
- ,[19] Rearrangements and convexity of level sets in PDE, Lecture Notes in Math. 1150, Springer-Verlag, Berlin (1985). | MR | Zbl
,[20] On the isoperimetric nature of a rearrangement inequality and its consequences for some variational problems, Arch. Rat. Mech. Anal., 94 (1986), 227-243. | MR | Zbl
,[21] Isoperimetric inequalities in Mathematical Physics, Ann. of Math. Studies, 27, Princeton University Press, Princeton, 1951. | MR | Zbl
- ,[22] Gesammelte Werke, 2, Reimer, Berlin, 1882.
,[23] Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372. | MR | Zbl
,[24] The standard isoperimetric theorem, in Handbook of convex geometry, P. M.Gruber and J. M.Wills eds., North-Holland, Amsterdam, 1993. | MR | Zbl
,[25] A weighted version of a rearrangement inequality, Ann. Univ. Ferrara, 43 (1997), 121-133. | MR | Zbl
,[26] Sulla proprietà di minimo della sfera, Rend. Circ. Mat. Palermo, 39 (1915), 109-138.
,[27] Minima of the Dirichlet norm and Toeplitz operators, preprint (1985).
,[28] Spaces BV and quasi-linear equations, Math. USSR Sb., 17 (1967), 225-267. | Zbl
,