Absorption effects for some elliptic equations with singularities
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 2, pp. 369-395.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We give an expository review of recent results obtained for elliptic equations having natural growth terms of absorption type and singular data. As a new result, we provide an application to the case of lower order terms of subcritical growth, proving a general solvability result with measure data for a class of equations modeled on (1.6).
In questa nota si presenta una breve rassegna di alcuni recenti risultati ottenuti su una classe di equazioni ellittiche con termini di assorbimento a crescita naturale e dati singolari. Si mettono in luce tipici fenomeni (stabilità, esistenza o nonesistenza, singolarità rimovibili, effetti di barriera) dovuti essenzialmente all'effetto regolarizzante dei termini di assorbimento che in alcuni casi può impedire la presenza o la diffusione di singolarità nell’equazione. Oltre all'esposizione di risultati già noti, si presenta una nuova applicazione al caso di crescita sottocritica per l'equazione modello (1.6), per la quale dimostriamo un risultato generale di esistenza con dato misura, nelle ipotesi ottimali che estendono la classica condizione di P. Benilan e H. Brezis [4].
@article{BUMI_2005_8_8B_2_a5,
     author = {Porretta, A.},
     title = {Absorption effects for some elliptic equations with singularities},
     journal = {Bollettino della Unione matematica italiana},
     pages = {369--395},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {2},
     year = {2005},
     zbl = {1151.35028},
     mrnumber = {1357958},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a5/}
}
TY  - JOUR
AU  - Porretta, A.
TI  - Absorption effects for some elliptic equations with singularities
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 369
EP  - 395
VL  - 8B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a5/
LA  - en
ID  - BUMI_2005_8_8B_2_a5
ER  - 
%0 Journal Article
%A Porretta, A.
%T Absorption effects for some elliptic equations with singularities
%J Bollettino della Unione matematica italiana
%D 2005
%P 369-395
%V 8B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a5/
%G en
%F BUMI_2005_8_8B_2_a5
Porretta, A. Absorption effects for some elliptic equations with singularities. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 2, pp. 369-395. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a5/

[1] C. Bandle - E. Giarrusso , Boundary blow-up for semilinear elliptic equations with nonlinear gradient terms, Adv. Diff. Equat., 1 (1996), 133-150. | MR | Zbl

[2] C. Bandle - M. Marcus , Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Anal. Math., 58 (1992), 9-24. | MR | Zbl

[3] P. Benilan - L. Boccardo - T. Gallouët - R. Gariepy - M. Pierre - J. L. Vázquez , An $L^1$ theory of existence and uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 240-273. | fulltext mini-dml | MR | Zbl

[4] P. Benilan - H. Brezis , Nonlinear problems related to the Thomas-Fermi equation, J. Evolution Equations, 3 (2003), 673-770. | MR | Zbl

[5] A. Bensoussan - L. Boccardo - F. Murat , On a nonlinear partial differential equation having natural growth terms and unbounded solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 347-364. | fulltext mini-dml | MR | Zbl

[6] L. Boccardo , T-minima: an approach to minimization problems in $L^1$, Contributions in honor of the memory of Ennio De Giorgi. Ricerche Mat., 49 (2000), 135-154. | MR | Zbl

[7] L. Boccardo - T. Gallouët , Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data, Nonlinear Anal. T.M.A., 19 (1992), 573-579. | MR | Zbl

[8] L. Boccardo - T. Gallouët - L. Orsina , Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 539-551. | fulltext mini-dml | MR | Zbl

[9] L. Boccardo - T. Gallouët - L. Orsina , Existence and nonexistence of solutions for some nonlinear elliptic equations, Journal d'Analyse Math., 73 (1997), 203-223. | MR | Zbl

[10] H. Brezis , Nonlinear elliptic equations involving measures, in Variational Inequalities, Cottle, Giannessi, Lions ed., Wiley, 1980, 53-73. | Zbl

[11] H. Brezis , Some Variational Problems of the Thomas-Fermi type, in Contributions to nonlinear partial differential equations (Madrid, 1981), 82-89, Res. Notes in Math. 89, Pitman, Boston Mass.-London, 1983. | MR | Zbl

[12] H. Brezis , Semilinear equations in $R^N$ without condition at infinity, Appl. Math. Optim., 12, no. 3 (1984), 271-282. | MR | Zbl

[13] H. Brezis - M. Marcus - A. Ponce , Nonlinear elliptic equations with measures revisited, to appear in Annals of Math. Studies, Princeton Univ. Press. | MR | Zbl

[13 bis] H. Brezis - L. Nirenberg , Removable singularities for some nonlinear elliptic equations, Top. Methods Nonlin. Anal., 9 (1997), 201-219. | MR | Zbl

[14] G. Dal Maso - F. Murat - L. Orsina - A. Prignet , Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 28, 4 (1999), 741-808. | fulltext mini-dml | MR | Zbl

[15] M. Fukushima - K. Sato - S. Taniguchi , On the closable part of pre-Dirichlet forms and the fine support of the underlying measures, Osaka J. Math., 28 (1991), 517-535. | fulltext mini-dml | MR | Zbl

[16] A. Gmira - L. Veron , Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math. J., 64 (1991), 271-324. | fulltext mini-dml | MR | Zbl

[17] T. Iwaniec - C. Sbordone , Weak minima of variational integrals, J. Reine Angew. Math., 454 (1994), 143-161. | MR | Zbl

[18] J. B. Keller , On solutions of $\Delta u = f (u)$, Comm. Pure Appl. Math., 10 (1957), 503-510. | MR | Zbl

[19] J.-M. Lasry - P.-L. Lions , Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem, Math. Ann., 283, n. 4 (1989), 583-630. | MR | Zbl

[20] J. Leray - J.-L. Lions , Quelques resultats de Višik sur les problemes elliptiques non lineaires par les methodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107. | fulltext mini-dml | MR | Zbl

[21] C. Loewner - L. Nirenberg , Partial differential equations invariant under conformal or projective transformations, Contributions to analysis (a collection of papers dedicated to Lipman Bers), pp. 245-272, Academic Press, New York, 1974. | MR | Zbl

[22] M. Marcus - L. Veron , Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincare Anal. Non Lineaire, 14 (1997), 237-274. | fulltext mini-dml | MR | Zbl

[23] M. Marcus - L. Veron , Existence and uniqueness results for large solutions of general nonlinear elliptic equations, Journal of Evolution Equations, 3 (2003), 637-652. | MR | Zbl

[24] F. Murat - A. Porretta , Stability properties, existence and nonexistence of renormalized solutions for elliptic equations with measure data, Comm. P.D.E., 27, n. 11 & 12 (2002), 2267-2310. | MR | Zbl

[25] L. Orsina , Weak minima for some functionals and elliptic equations involving measures, C. R. Acad. Sci. Paris 322, Serie I, (1996), 1151-1156. | MR | Zbl

[26] L. Orsina - A. Porretta , Strong stability results for nonlinear elliptic equations with respect to very singular perturbation of the data, Comm. in Contemporary Math., 3 (2001), 259-285. | MR | Zbl

[27] R. Osserman , On the inequality $\Delta u \geq; f (u)$, Pacific J. Math., 7 (1957), 1641-1647. | fulltext mini-dml | MR | Zbl

[28] A. Porretta , Some remarks on the regularity of solutions for a class of elliptic equations with measure data, Houston Journ. of Math., 26 (2000), 183-213. | MR | Zbl

[29] A. Porretta , Remarks on the existence or loss of minima of infinite energy, preprint. | MR | Zbl

[30] A. Porretta , Local estimates and large solutions for some elliptic equations with absorption, Advances in Diff. Eq. 9, n. 3-4 (2004), 329-351. | MR | Zbl

[31] A. Porretta , PHD Thesis, Università di Roma «La Sapienza», 1999.

[32] A. Porretta , Existence for elliptic equations in $L^1$ having lower order terms with natural growth, Portugaliae Math., 57 (2000), 179-190. | MR | Zbl

[33] A. Porretta , Some uniqueness results for elliptic equations without condition at infinity, Commun. Contemporary Mathematics, 5, n. 5 (2003), 1-13. | MR | Zbl

[34] G. Stampacchia , Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, (Grenoble), 15, n. 1 (1965), 189-258. | fulltext mini-dml | MR | Zbl

[35] J. L. Vazquez , On a semilinear equation in $R^2$ involving bounded measures, Proc. Royal Soc. Edinburgh, 95A (1983), 181-202. | MR | Zbl

[36] L. Veron , Semilinear elliptic equations with uniform blow-up on the boundary, J. Analyse Math., 59 (1992), 231-250. | MR | Zbl

[37] L. Veron , Elliptic equations involving measures, to appear in Handbook for Partial Differential Equations, M.Chipot, P.Quittner Eds, Elsevier. | fulltext mini-dml | MR | Zbl