The Euler Lagrange Equation and the Pontriagin Maximum Principle
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 2, pp. 323-347.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider the necessary conditions in the Calculus of Variations, expressed by the validity of the Euler Lagrange equation, or of the Pontriagin Maximum Principle; in particular, problems on multi-dimensional domanis are considered.
Si esaminano le condizioni necessarie del Calcolo delle Variazioni, espresse sotto la forma dell'equazione di Eulero Lagrange e del Principio del Massimo di Pontriagin; in particolare, si esaminano i problemi su domini multi-dimensionali.
@article{BUMI_2005_8_8B_2_a2,
     author = {Cellina, Arrigo},
     title = {The {Euler} {Lagrange} {Equation} and the {Pontriagin} {Maximum} {Principle}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {323--347},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {2},
     year = {2005},
     zbl = {1178.49021},
     mrnumber = {801585},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a2/}
}
TY  - JOUR
AU  - Cellina, Arrigo
TI  - The Euler Lagrange Equation and the Pontriagin Maximum Principle
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 323
EP  - 347
VL  - 8B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a2/
LA  - en
ID  - BUMI_2005_8_8B_2_a2
ER  - 
%0 Journal Article
%A Cellina, Arrigo
%T The Euler Lagrange Equation and the Pontriagin Maximum Principle
%J Bollettino della Unione matematica italiana
%D 2005
%P 323-347
%V 8B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a2/
%G en
%F BUMI_2005_8_8B_2_a2
Cellina, Arrigo. The Euler Lagrange Equation and the Pontriagin Maximum Principle. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 2, pp. 323-347. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a2/

[1] J. M. Ball - V. J. Mizel , One dimensional minimum problems whose minimizers do not satisfy the Euler Lagrange equation, Arch. Rat. Mech. Anal., 90 (1985), 325-388 | MR | Zbl

[2] G. Bouchitté , Lectures on Optimal Transportation, Cortona, August 2004.

[3] H. Brezis , Multiplicateur de Lagrange en torsion elasto-plastique, Arch. Rat. Mech. Anal. (1973), 32-40. | MR | Zbl

[4] H. Brezis - M. Sibony , Equivalence de deux inequations variationelles et applications, Arch. Rat. Mech. Anal., 41 (1971), 254-265. | MR | Zbl

[5] P. Celada - A. Cellina , Existence and non existence of solutions to a variational problem on a square, Houston J. of Math., 24 (1998), 345-375. | MR | Zbl

[6] A. Cellina , Minimizing a functional depending on $\nabla u$ and $u$, Ann. Inst. H. Poincaré, Anal. Non Lineaire, 14 (1997), 339-352. | fulltext mini-dml | MR | Zbl

[7] A. Cellina , On uniqueness almost everywhere for monotonic differential inclusions, Nonlinear Analysis TMA, 25 (1995), 899-903. | MR | Zbl

[8] A. Cellina , On the validity of the Euler Lagrange equation, Jour. Diff. Equat., 171 (2001), 430-442. | MR | Zbl

[9] A. Cellina , On a constrained Dirichlet problem, SIAM J. Control Optim., 41 (2002), 331-344. | MR | Zbl

[10] A. Cellina - S. Perrotta , On the validity of the Maximum Principle and of the Euler Lagrange equation for a minimum problem depending on the gradient, SIAM J. Control Optim., 36 (1998), 1987-1998. | MR | Zbl

[11] A. Cellina - M. Vornicescu , On gradient flows, Jour. Diff. Equat., 145 (1998), 489-501. | MR | Zbl

[12] F. Clarke , Optimization and non smooth analysis, Wiley-Interscience, New York, 1983.

[13] A. Ferriero - E. M. Marchini , On the validity of the Euler Lagrange equation, a preprint. | MR | Zbl

[14] L. Pontriagin - V. Boltyianskii - R. Gamkrelidze - E. Mishchenko , The Mathematical Theory of Control Processes, Interscience, New York, 1962.

[15] M. Vornicescu , A variational Problem on subsets of $\mathbb{R}^N$, Proc. Royal. Soc. Edinburgh Sect. A, 127 (1997), 1089-1101. | MR | Zbl