$L^p$-boundedness for pseudodifferential operators with non-smooth symbols and applications
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 2, pp. 461-503.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Starting from a general formulation of the characterization by dyadic crowns of Sobolev spaces, the authors give a result of $L^{p}$ continuity for pseudodifferential operators whose symbol a(x,ξ) is non smooth with respect to x and whose derivatives with respect to ξ have a decay of order ρ with $0 \rho \leq 1$. The algebra property for some classes of weighted Sobolev spaces is proved and an application to multi - quasi - elliptic semilinear equations is given.
Utilizzando una formulazione generalizzata della caratterizzazione per corone diadiche degli spazi di Sobolev, nel presente lavoro si dimostra la continuità $L^{p}$ per operatori pseudodifferenziali il cui simbolo a(x,ξ) non è infinitamente differenziabile rispetto alla variabile x, mentre le sue derivate rispetto alla variabile ξ decadono con ordine ρ, con $0 \rho \leq 1$. Viene poi provata una proprietà di algebra per una classe di spazi di Sobolev pesati, che ben si applica allo studio della regolarità delle soluzioni di equazioni semi lineari multi-quasi-ellittiche.
@article{BUMI_2005_8_8B_2_a12,
     author = {Garello, Gianluca and Morando, Alessandro},
     title = {$L^p$-boundedness for pseudodifferential operators with non-smooth symbols and applications},
     journal = {Bollettino della Unione matematica italiana},
     pages = {461--503},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {2},
     year = {2005},
     zbl = {1178.35395},
     mrnumber = {748836},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a12/}
}
TY  - JOUR
AU  - Garello, Gianluca
AU  - Morando, Alessandro
TI  - $L^p$-boundedness for pseudodifferential operators with non-smooth symbols and applications
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 461
EP  - 503
VL  - 8B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a12/
LA  - en
ID  - BUMI_2005_8_8B_2_a12
ER  - 
%0 Journal Article
%A Garello, Gianluca
%A Morando, Alessandro
%T $L^p$-boundedness for pseudodifferential operators with non-smooth symbols and applications
%J Bollettino della Unione matematica italiana
%D 2005
%P 461-503
%V 8B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a12/
%G en
%F BUMI_2005_8_8B_2_a12
Garello, Gianluca; Morando, Alessandro. $L^p$-boundedness for pseudodifferential operators with non-smooth symbols and applications. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 2, pp. 461-503. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a12/

[1] M. Beals - M. C. Reeds , Microlocal regularity theorems for non smooth pseudodifferential operators and applications to non linear problems, Trans. Am. Math. Soc., 285 (1984), 159-184. | MR | Zbl

[2] P. Boggiatto - E. Buzano - L. Rodino , Global Hypoellipticity and Spectral Theory, Mathematical Research, Vol. 92, Akademie Verlag, Berlin, New York, 1996. | MR | Zbl

[3] J. M. Bony , Calcul simbolique et propagation des singularités pour les équations aux dérivées partielles non lineaires, Ann. Sc. Ec. Norm. Sup., 14 (1981), 161-205. | fulltext mini-dml | MR | Zbl

[4] J. M. Bony - J. Y. Chemin , Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France, 122 (1994), 77-118. | fulltext mini-dml | MR | Zbl

[5] A. P. Calderón , Intermediate spaces and interpolation, the complex method, Studia Math., 24 (1964), 113-190. | fulltext mini-dml | MR | Zbl

[6] R. Coifman - Y. Meyer , Au delà des opérateurs pseudo-differentiels, Astérisque 57, Soc. Math. France, 1978. | MR | Zbl

[7] Y. V. Egorov - B. W. Schulze , Pseudo-differential operators, singularities, applications, Operator Theory: Advances and Applications, 93, Birkhäuser Verlag, Basel, 1997. | MR | Zbl

[8] C. Fefferman , $L^p$ bounds for pseudodifferential operators, Israel J. Math., 14 (1973), 413-417. | MR | Zbl

[9] G. Garello , Generalized Sobolev algebras and regularity for solutions of multiquasi-elliptic semi linear equations, Comm. in Appl. Analysis, 3 (4) (1999), 563-574. | MR | Zbl

[10] G. Garello , Pseudodifferential operators with symbols in weighted Sobolev spaces and regularity for non linear partial differential equations, Math. Nachr., 239-240 (2001), 62-79. | MR | Zbl

[11] G. Garello - A. Morando , $L^p$-bounded pseudodifferential operators and regularity for multi-quasi-elliptic equations, to appear in Integr. equ. oper. theory. | Zbl

[12] S. Gindikin - L. R. Volevich , The method of Newton’s Polyhedron in the theory of partial differential equations, Coll. Mathematics and its Applications, Kluwer Academic Publishers, 1992. | MR | Zbl

[13] B. Helffer , Théorie spectrale pour des opérateurs globalement elliptiques, Soc. Math. de France, Astérisque, 1984. | MR | Zbl

[14] L. Hörmander , The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math., 32 (3) (1979), 359-443. | MR | Zbl

[15] L. Hörmander , The analysis of linear partial differential operators II. Differential operators with constant coefficients, Grundlehren der Mathematischen Wissenschaften, vol. 257, Springer-Verlag, Berlin, 1983. | MR | Zbl

[16] P. I. Lizorkin , $(L^p, L^q )$-multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR, 152 (1963), 808-811. | MR | Zbl

[17] J. Marschall , Pseudodifferential operators with non regular symbols of the class $S^m_{\rho,\delta}$, Comm. in Part. Diff. Eq., 12 (8) (1987), 921-965. | MR | Zbl

[18] J. Marschall , Pseudo-differential operators with coefficients in Sobolev spaces, Trans. Amer. Math. Soc., 307 (1) (1988), 335-361. | Zbl

[19] M. A. Shubin , Pseudodifferential operators and spectral theory, Springer-Verlag, Berlin, 1987. | MR | Zbl

[20] E. M. Stein , Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J. 1970. | MR | Zbl

[21] M. E. Taylor , Pseudodifferential Operators, Princeton Univ. Press 1981. | MR | Zbl

[22] M. E. Taylor , Pseudodifferential operators and nonlinear PDE, Birkhäuser, Basel-Boston-Berlin, 1991. | MR | Zbl

[23] H. Triebel , Interpolation theory, function spaces, differential operators, VEB, Berlin, 1977. | MR | Zbl

[24] H. Triebel , Theory of Function Spaces, Birkhäuser Verlag, Basel, Boston, Stuttgart, 1983. | MR | Zbl

[25] H. Triebel , General Function Spaces, I. Decomposition method, Math. Nachr., 79 (1977), 167-179. | MR | Zbl

[26] H. Triebel , General Function Spaces, II. Inequalities of Plancherel-Pólya- Nikol'skij type. $L_p$-spaces of analytic functions; $0 < p \leq \infty$, J. Approximation Theory, 19 (1977), 154-175. | MR | Zbl

[27] H. Triebel , General Function Spaces, III. Spaces $B_{p, q}^g(x)$ and $F_{p, q}^g(x)$, $1 < p < \infty$: basic properties, Anal. Math., 3 (3) (1977), 221-249. | MR | Zbl

[28] H. Triebel , General Function Spaces, IV. Spaces $B_{p, q}^g(x)$ and $F_{p, q}^g(x)$, $1 < p < \infty$: special properties, Anal. Math., 3 (4) (1977), 299-315. | MR | Zbl

[29] H. Triebel , General Function Spaces, V. The spaces $B_{p, q}^g(x)$ and $F_{p, q}^g(x)$ the case $0 < p < \infty$, Math. Nachr., 87 (1979), 129-152. | MR | Zbl

[30] M. W. Wong , An introduction to pseudo-differential operators, 2nd ed., World Scientific Publishing Co., Inc., River Edge, NJ, 1999. | MR | Zbl