$L^p$-boundedness for pseudodifferential operators with non-smooth symbols and applications
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 2, pp. 461-503
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
Starting from a general formulation of the characterization by dyadic crowns of Sobolev spaces, the authors give a result of $L^{p}$ continuity for pseudodifferential operators whose symbol a(x,ξ) is non smooth with respect to x and whose derivatives with respect to ξ have a decay of order ρ with $0 \rho \leq 1$. The algebra property for some classes of weighted Sobolev spaces is proved and an application to multi - quasi - elliptic semilinear equations is given.
@article{BUMI_2005_8_8B_2_a12,
author = {Garello, Gianluca and Morando, Alessandro},
title = {$L^p$-boundedness for pseudodifferential operators with non-smooth symbols and applications},
journal = {Bollettino della Unione matematica italiana},
pages = {461--503},
year = {2005},
volume = {Ser. 8, 8B},
number = {2},
zbl = {1178.35395},
mrnumber = {MR2149396},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a12/}
}
TY - JOUR AU - Garello, Gianluca AU - Morando, Alessandro TI - $L^p$-boundedness for pseudodifferential operators with non-smooth symbols and applications JO - Bollettino della Unione matematica italiana PY - 2005 SP - 461 EP - 503 VL - 8B IS - 2 UR - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a12/ LA - en ID - BUMI_2005_8_8B_2_a12 ER -
%0 Journal Article %A Garello, Gianluca %A Morando, Alessandro %T $L^p$-boundedness for pseudodifferential operators with non-smooth symbols and applications %J Bollettino della Unione matematica italiana %D 2005 %P 461-503 %V 8B %N 2 %U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a12/ %G en %F BUMI_2005_8_8B_2_a12
Garello, Gianluca; Morando, Alessandro. $L^p$-boundedness for pseudodifferential operators with non-smooth symbols and applications. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 2, pp. 461-503. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_2_a12/