Boundary map and overrings of half-factorial domains
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 1, pp. 173-185.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We investigate factorization of elements in overrings of a half-factorial domain $A$ in relation with the behaviour of the boundary map of $A$. It turns out that a condition, called $\mathcal{C}^{\star}$, on the extension plays a central role in this study. We finally apply our results to the special case of $A+XB[X]$ polynomial rings.
In questo articolo studiamo la fattorizzazione di elementi nei sopranelli di un dominio metà-fattoriale $A$ in funzione del comportamento della funzione di bordo di $A$. A tale riguardo, troviamo che gioca un ruolo centrale una condizione sulle estensioni, che chiamiamo condizione $\mathcal{C}^{\star}$. Quindi studiamo quando questa condizione $\mathcal{C}C^{\star}$ è verificata. Infine, applichiamo i risultati ottenuti al caso speciale degli anelli di polinomi.
@article{BUMI_2005_8_8B_1_a9,
     author = {Gonzalez, Nathalie and Pellerin, S\'ebastien},
     title = {Boundary map and overrings of half-factorial domains},
     journal = {Bollettino della Unione matematica italiana},
     pages = {173--185},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {1},
     year = {2005},
     zbl = {1150.13003},
     mrnumber = {1303668},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a9/}
}
TY  - JOUR
AU  - Gonzalez, Nathalie
AU  - Pellerin, Sébastien
TI  - Boundary map and overrings of half-factorial domains
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 173
EP  - 185
VL  - 8B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a9/
LA  - en
ID  - BUMI_2005_8_8B_1_a9
ER  - 
%0 Journal Article
%A Gonzalez, Nathalie
%A Pellerin, Sébastien
%T Boundary map and overrings of half-factorial domains
%J Bollettino della Unione matematica italiana
%D 2005
%P 173-185
%V 8B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a9/
%G en
%F BUMI_2005_8_8B_1_a9
Gonzalez, Nathalie; Pellerin, Sébastien. Boundary map and overrings of half-factorial domains. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 1, pp. 173-185. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a9/

[1] D. F. Anderson - S. T. Chapman - W. W. Smith, Overrings of half-factorial domains, Canad. Math. Bull., 37 (1994), 437-442. | MR | Zbl

[2] D. F. Anderson - J. Park, Locally half-factorial domains, Houston J. Math., 23 (1997), 617-630. | MR | Zbl

[3] D. F. Anderson - J. Park, Factorization in subrings of $K[X]$ and $K[[X]]$, Lecture Notes in Pure and Applied Mathematics, vol. 189, Marcel Dekker, New York, 1997, 227-241. | MR | Zbl

[4] L. Carlitz, A characterization of algebraic number fields with class number two, Proc. Amer. Math. Soc., 11 (1960), 391-392. | MR | Zbl

[5] S. T. Chapman - J. Coykendall, Half-factorial domains, a survey, in Non-Noetherian Commutative Ring Theory, Kluwer Academic Publishers, 2001. | MR | Zbl

[6] S. T. Chapman - S. Glaz, One hundred problems in commutative ring theory, in Non-Noetherian Commutative Ring Theory, Kluwer Academic Publishers, 2001. | MR | Zbl

[7] S. T. Chapman - W. W. Smith, Factorization in Dedekind domains with finite class group, Israel J. Math, 71 (1990), 65-95. | MR | Zbl

[8] J. Coykendall, A characterization of polynomial rings with the half-factorial property, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 189 (1997), 291-294. | MR | Zbl

[9] J. Coykendall, The half-factorial property in integral extensions, Comm. Algebra, 27 (7) (1999), 3153-3159. | MR | Zbl

[10] J. Coykendall, Half-factorial domains in quadratic fields, J. Algebra, 235 (2001), 417-430. | MR | Zbl

[11] J. Coykendall, On the integral closure of a half-factorial domain, J. Pure Appl. Algebra, 180 (2003), 25-34. | MR | Zbl

[12] N. Gonzalez, Elasticity of $A+XB[X]$ domains, J. Pure Appl. Algebra, 138 (1999), 119-137. | MR | Zbl

[13] N. Gonzalez - S. Pellerin - R. Robert, Elasticity of $A+XI[X]$ domains where A is a UFD, J. Pure Appl. Algebra, 160 (2001), 183-194. | MR | Zbl

[14] F. Halter-Koch, Factorization of algebraic integers, Ber. Math. Stat. Sektion im Forschungszentrum, 191 (1983), 1-24. | Zbl

[15] H. Kim, Examples of half-factorial domains, Canad. Math. Bull., 43 (2000), 362-367. | MR | Zbl

[16] M. Picavet-L’Hermitte, Factorization in some orders with a PID as integral closure, Algebraic number theory and Diophantine analysis (Graz, 1998), 365-390, de Gruyter, Berlin, 2000. | MR | Zbl

[17] A. Zaks, Half factorial domains, Israel J. Math., 37 (1980), 281-302. | MR | Zbl