Quantum moment equations for a two-band $k\cdot p$ Hamiltonian
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 1, pp. 103-121.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The hydrodynamic moment equations for a quantum system described by a two-band $k \cdot p$ Hamiltonian are derived. In the case of pure states, it is proved that the order-0 and order-1 moment equations yield a closed system which is the two band analogue of Madelung's fluid equations.
Vengono dedotte le equazioni per i momenti idrodinamici di un sistema quantistico descritto da un'Hamiltoniana $k \cdot p$ a due bande. Nel caso di stati puri si dimostra che le equazioni dei momenti di ordine 0 e di ordine 1 forniscono un sistema chiuso che costituisce l'analogo a due bande delle equazioni del fluido di Madelung.
@article{BUMI_2005_8_8B_1_a4,
     author = {Barletti, Luigi},
     title = {Quantum moment equations for a two-band $k\cdot p$ {Hamiltonian}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {103--121},
     publisher = {mathdoc},
     volume = {Ser. 8, 8B},
     number = {1},
     year = {2005},
     zbl = {1150.81001},
     mrnumber = {2014828},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a4/}
}
TY  - JOUR
AU  - Barletti, Luigi
TI  - Quantum moment equations for a two-band $k\cdot p$ Hamiltonian
JO  - Bollettino della Unione matematica italiana
PY  - 2005
SP  - 103
EP  - 121
VL  - 8B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a4/
LA  - en
ID  - BUMI_2005_8_8B_1_a4
ER  - 
%0 Journal Article
%A Barletti, Luigi
%T Quantum moment equations for a two-band $k\cdot p$ Hamiltonian
%J Bollettino della Unione matematica italiana
%D 2005
%P 103-121
%V 8B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a4/
%G en
%F BUMI_2005_8_8B_1_a4
Barletti, Luigi. Quantum moment equations for a two-band $k\cdot p$ Hamiltonian. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 1, pp. 103-121. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a4/

[1] L. Barletti, A mathematical introduction to the Wigner formulation of quantum mechanics, B. Unione Mat. Ital. B, 6-B (2003), 693-716. | fulltext bdim | fulltext mini-dml | MR | Zbl

[2] L. Barletti, On the thermal equilibrium of a quantum system described by a twoband Kane Hamiltonian, submitted.

[3] A. Böhm, Quantum Mechanics, Springer Verlag, 1979. | MR | Zbl

[4] G. Borgioli - G. Frosali - P. F. Zweifel, Wigner approach to the two-band Kane model for a tunneling diode, Transport Theory Stat. Phys., 32 (2003), 347- 366. | MR | Zbl

[5] P. Degond - C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, J. Statist. Phys., 112 (2003), 587-628. | MR | Zbl

[6] L. Demeio - L. Barletti - P. Bordone - C. Jacoboni, Wigner function for multiband transport in semiconductors, Transport Theory Stat. Phys., 32 (2003), 307-325. | MR | Zbl

[7] R. P. Feynman, Statistical Mechanics, W. A. Benjamin Inc., 1972. | Zbl

[8] G. B. Folland, Harmonic Analysis in Phase Space, Princeton University Press, 1989. | MR | Zbl

[9] C. L. Gardner, The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math., 54 (1994), 409-427. | MR | Zbl

[10] I. Gasser - P. A. Markowich - A. Unterreiter, Quantum hydrodynamics, in Modeling of Collisions, Gauthier-Villars, 1997.

[11] A. Jüngel, Quasi-Hydrodynamic Semiconductor Equations, Birkhäuser, 2001. | MR | Zbl

[12] E. O. Kane, Zener tunneling in semiconductors, J. Phys. Chem. Solids, 12 (1959), 181-188.

[13] E. O. Kane, The $k \cdot p$ method, in Physics of III-V Compounds, Semiconductors and Semimetals, Vol. 1, Academic Press, 1966.

[14] L. D. Landau - E. M. Lifshitz, Quantum Mechanics: non-relativistic theory, 3rd ed., Pergamon Press, 1977. | MR | Zbl

[15] C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Statist. Phys., 83 (1996), 1021-1065. | MR | Zbl

[16] P. L. Lions - T. Paul, Sur les mesures de Wigner, Rev. Matematica Iberoamericana, 9 (1993), 553-618. | MR | Zbl

[17] J. M. Luttinger - W. Kohn, Motion of electrons and holes in perturbed periodic fields, Phys. Rev., 97 (1955), 869-882. | Zbl

[18] E. Madelung, Quantentheorie in hydrodynamischer Form, Zeitschr. f. Phys., 40 (1926), 322-326.

[19] P. A. Markowich - C. A. Ringhofer - C. Schmeiser, Semiconductor Equations, Springer Verlag, 1990. | MR | Zbl

[20] T. Wenckebach, Essentials of Semiconductor Physics, Wiley, 1999.

[21] R. Q. Yang - J. M. Xu, Analysis of transmission in polytype interband tunneling heterostructures, J. Appl. Phys., 72 (1992), 4714-4726. | MR