Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2005_8_8B_1_a2, author = {Preziosi, L.}, title = {Modelli matematici a sostegno della ricerca contro il cancro}, journal = {Bollettino della Unione matematica italiana}, pages = {55--76}, publisher = {mathdoc}, volume = {Ser. 8, 8B}, number = {1}, year = {2005}, zbl = {1182.92041}, mrnumber = {1914120}, language = {it}, url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a2/} }
Preziosi, L. Modelli matematici a sostegno della ricerca contro il cancro. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 1, pp. 55-76. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a2/
[1] J.ADAM - N.BELLOMO EDS., Survey of Models on Tumor Immune Systems Dynamics, Birkhäuser, Boston, 1996. | Zbl
[2] Modelling the immune response to tumor heterogeneity and progression, J. Theor. Medicine, 4, (2002), 51-66. | Zbl
- - ,[3] On the mechanics of a growing tumor, Int. J. Engng. Sci., 40 (2002), 1297-1316. | MR | Zbl
- ,[4] Mechanical models in tumour growth, in Cancer Modelling and Simulation, Chapman \& Hall/CRC Press, Boca Raton, 2003. | MR
- ,[5] The role of stress in the grouth of a multicell spherad, J. Math. Biol., in press. | Zbl
- ,[6] On the closure of mass balance models for tumour growth, Math. Models Methods Appl. Sci., 12 (2002), 737-754. | MR | Zbl
- ,[7] Continuous and discrete mathematical models of tumour-induced angiogenesis, Bull. Math. Biol., 60 (1998), 857-899. | Zbl
- ,[8] Generalized kinetic (Boltzmann) models: mathematical structures and applications, Math. Models Meth. Appl. Sci., 12 (2002), 567-591. | MR | Zbl
- - ,[9] N.BELLOMO Ed., Math. Comp. Modell., 23 (1996).
[10] N.BELLOMO - E.DE ANGELIS Eds., Math. Comp. Model. (2003).
[11] Dynamics of tumor interaction with the host immune system, Math. Comp. Modell., 20 (1994), 107-122. | Zbl
- ,[12] Lecture Notes on the Generalized Boltzmann Equation, World Scientific (2000). | MR
- ,[13] Cell kinetics in tumour cords studied by a model with variable cell cycle length, Math. Biosci., 177 \& 178 (2002), 103-125. | MR | Zbl
- - - ,[14] Regression and regrowth of tumour cords following single-dose anticancer treatment, Bull. Math. Biol., 65 (2003), 903-931.
- - - ,[15] Modeling the interactions between tumour cells and a blood vessel in a microenvironment within a vascular tumour, Eur. J. Appl. Math., 12 (2001), 529-556. | MR | Zbl
- - ,[16] Modelling avascular tumor growth, in Cancer Modelling and Simulation, Chapman \& Hall/CRC Press, Boca Raton, 2003. | MR
,[17] IMA J. Math. Appl. Med. Biol., in press.
- ,[18] M. A. J.CHAPLAIN Ed., Special Issue, Math. Models Methods Appl. Sci., 9 (1999).
[19] M. A. J.CHAPLAIN Ed., Special Issue on Mathematical Modelling and Simulations of Aspects of Cancer Growth, J. Theor. Medicine, 4 (2002). | Zbl
[20] Mathematical modelling of tissue invasion in Cancer Modelling and Simulation, Chapman \& Hall/CRC Press, Boca Raton, 2003. | MR
- ,[21] Misperception of stress as a cause of hyperplasia and dysplasia (2004).
- - ,[22] Qualitative analysis of a mean field model of tumorimmune system competition, Math. Models Meth. Appl. Sci., 13 (2003), 197-220. | Zbl
- ,[23] Mathematical frameworks and applications on tumors and immune system interactions, Math. Models Methods Appl. Sci., 11 (2001), 1609-1630. | MR | Zbl
- ,[24] Advection-diffusion models for solid tumour evolution in vivo and related free boundary problem, Math. Models Methods Appl. Sci., 10 (2000), 379-407. | MR | Zbl
- ,[25] Cellular Automata and Biological Pattern Formation, Birkhäuser, Boston, 2003.
,[26] A new mechanism of aggregation in a lattice-gas cellular automaton model, Math. Comp. Model., 31 (2002), 35-40. | MR | Zbl
,[27] On Darcys law for growing porous media, Int. J. Nonlinear Mech., 37 (2001), 485-491. | Zbl
- ,[28] On the existence of spatially patterned dormant malignancies in a model for the growth of non-necrotic vascular tumours, Math. Models Methods Appl. Sci., 11 (2001), 601-625. | MR | Zbl
- ,[29] Percolation, self-organization and Burgers dynamics in blood vessel formation, Phys. Rev. Lett., 90 (2003), 118101.
- - - - - - - - ,[30] Multiphase models of tumour growth: General framework and particular cases, in Mathematical Modelling and Computing in Biology and Medicine, V.Capasso Ed., Esculapio, Milano, 518-525 (2003). | MR
- ,[31] Tumor heterogeneity and progression: Conceptual foundation for modeling, Invasion and Metastasis, 16 (1006), 177-208.
- - ,[32] A constrained mixture model and remodeling of soft tissues, Math. Models Meth. Appl. Sci., 12 (2002), 407-430. | MR | Zbl
- ,[33] On the stability of homogeneous solutions to some aggregation models, Discrete and Continuous Dynamical Systems B, 4 (2004), 203-220. | MR | Zbl
- - ,[34] From microscopic to macroscopic description for general kinetic models, Math. Models Meth. Appl. Sci., 12 (2002), 993-1011. | MR | Zbl
,[35] Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma, Bull. Math. Biol., 63 (2001), 801-863. | Zbl
- - - - ,[36] Modelling tumour induced angiogenesis, in Cancer Modelling and Simulation, Chapman \& Hall/CRC Press, Boca Raton, 2003. | MR
- ,[37] Multiphase mechanics of capsule formation in tumours, J. Biomech. Engng., 124 (2002), 237-243.
- ,[38] Mathematical modelling of flow in 2D and 3D vascular networks application, Math. Comp. Model. (2004). | Zbl
- - - - ,[39] Qualitative analysis of a mathematical model for capillary formation in tumor angiogenesis, Math. Models Meth. Appl. Sci., 13 (2003), 19-34. | MR | Zbl
,[40] L.PREZIOSI, Ed., Cancer Modelling and Simulation, Chapman \& Hall/CRC Press, (2003). | MR | Zbl
[41] Modelling the early stages of vascular network assembly, EMBO J. Biol., 22 (2003), 1771-1779.
- - - - - ,[42] Stability of some mechanisms of chemotactic aggregation, SIAM J. Appl. Math., 62 (2002), 1581-1633. | MR | Zbl
,[43] Mathematical modelling of the effects of mitotic inhibitors on avascular tumour growth, J. Theor. Med., 1 (1999), 171-211. | Zbl
- ,