A sharp weighted Wirtinger inequality
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 1, pp. 259-267
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We obtain a sharp estimate for the best constant $C>0$ in the Wirtinger type inequality $$ \int_{0}^{2\pi}\gamma^{p}\omega^{2}\leq C \int_{0}^{2\pi}\gamma^{q}\omega'^{2} $$ where $\gamma$ is bounded above and below away from zero, $w$ is $2\pi$-periodic and such that $\int_{0}^{2\pi}\gamma^{p}\omega=0$, and $p+q\geq 0$. Our result generalizes an inequality of Piccinini and Spagnolo.
@article{BUMI_2005_8_8B_1_a12,
author = {Ricciardi, Tonia},
title = {A sharp weighted {Wirtinger} inequality},
journal = {Bollettino della Unione matematica italiana},
pages = {259--267},
publisher = {mathdoc},
volume = {Ser. 8, 8B},
number = {1},
year = {2005},
zbl = {1177.26026},
mrnumber = {MR2122985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a12/}
}
Ricciardi, Tonia. A sharp weighted Wirtinger inequality. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 1, pp. 259-267. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a12/