Topological degree, Jacobian determinants and relaxation
Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 1, pp. 187-250
A characterization of the total variation $TV(u, \Omega)$ of the Jacobian determinant $\det Du$ is obtained for some classes of functions $u : \Omega \rightarrow \mathbb{R}^{n}$ outside the traditional regularity space $W^{1, n}(\Omega; \mathbb{R}^{n})$. In particular, explicit formulas are deduced for functions that are locally Lipschitz continuous away from a given one point singularity $x_{0}\in \Omega$. Relations between $TV(u, \Omega)$ and the distributional determinant $\text{Det}\, Du$ are established, and an integral representation is obtained for the relaxed energy of certain polyconvex functionals at maps $u\in W^{1, p}(\Omega; \mathbb{R}^{n})\cap W^{1, \infty}(\Omega\backslash \{x_0\}; \mathbb{R}^{n})$.
@article{BUMI_2005_8_8B_1_a10,
author = {Fonseca, Irene and Fusco, Nicola and Marcellini, Paolo},
title = {Topological degree, {Jacobian} determinants and relaxation},
journal = {Bollettino della Unione matematica italiana},
pages = {187--250},
year = {2005},
volume = {Ser. 8, 8B},
number = {1},
zbl = {1177.49066},
mrnumber = {MR2122983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a10/}
}
TY - JOUR AU - Fonseca, Irene AU - Fusco, Nicola AU - Marcellini, Paolo TI - Topological degree, Jacobian determinants and relaxation JO - Bollettino della Unione matematica italiana PY - 2005 SP - 187 EP - 250 VL - 8B IS - 1 UR - http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a10/ LA - en ID - BUMI_2005_8_8B_1_a10 ER -
Fonseca, Irene; Fusco, Nicola; Marcellini, Paolo. Topological degree, Jacobian determinants and relaxation. Bollettino della Unione matematica italiana, Série 8, 8B (2005) no. 1, pp. 187-250. http://geodesic.mathdoc.fr/item/BUMI_2005_8_8B_1_a10/