Function approximation of Seidel aberrations by a neural network
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 687-696.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This paper deals with the possibility of using a feedforward neural network to test the discrepancies between a real astronomical image and a predefined template. This task can be accomplished thanks to the capability of neural networks to solve a nonlinear approximation problem, i.e. to construct an hypersurface that approximates a given set of scattered data couples. Images are encoded associating each of them with some conveniently chosen statistical moments, evaluated along the $\{x, y\}$ axes; in this way a parsimonious method is obtained that allows a really effective approach to Seidel aberration diagnostics.
In questo articolo viene studiata la possibilità di usare una rete neurale feedforward per identificare eventuali discrepanze tra un'immagine astronomica reale ed un suo modello predefinito. Questo compito viene affrontato grazie alla capacità delle reti neurali di risolvere un problema di approssimazione non lineare di funzioni attraverso la costruzione di un'ipersuperficie approssimante un insieme dato di punti sparsi. La codifica delle immagini viene effettuata associando ciascuna di esse ad alcuni momenti statistici opportunamente scelti, calcolati relativamente agli assi $\{x, y\}$, ottenendo in tal modo un metodo computazionalmente economico che permette un approccio realmente efficace alla diagnostica delle aberrazioni di Seidel.
@article{BUMI_2004_8_7B_3_a9,
     author = {Cancelliere, Rossella and Gai, Mario},
     title = {Function approximation of {Seidel} aberrations by a neural network},
     journal = {Bollettino della Unione matematica italiana},
     pages = {687--696},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {3},
     year = {2004},
     zbl = {1182.41017},
     mrnumber = {1015670},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a9/}
}
TY  - JOUR
AU  - Cancelliere, Rossella
AU  - Gai, Mario
TI  - Function approximation of Seidel aberrations by a neural network
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 687
EP  - 696
VL  - 7B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a9/
LA  - en
ID  - BUMI_2004_8_7B_3_a9
ER  - 
%0 Journal Article
%A Cancelliere, Rossella
%A Gai, Mario
%T Function approximation of Seidel aberrations by a neural network
%J Bollettino della Unione matematica italiana
%D 2004
%P 687-696
%V 7B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a9/
%G en
%F BUMI_2004_8_7B_3_a9
Cancelliere, Rossella; Gai, Mario. Function approximation of Seidel aberrations by a neural network. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 687-696. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a9/

[1] M. Born-E. Wolf, Principles of optics, Pergamon, New York, 1985.

[2] R. Cancelliere-M. Gai, A Comparative Analysis of Neural Network Performances in Astronomy Imaging, Applied Numerical Mathematics, 45, n. 1 (2003), 87-98. | Zbl

[3] G. Cybenko, $\infty$ approximation by superpositions of a sigmoidal function, Math. Control-Signals Systems, 2 (1989), 303-314. | MR | Zbl

[4] S. W. Ellacott, Aspects of the numerical analysis of neural networks, Acta Numerica, 1994, 145-202. | MR | Zbl

[5] K. I. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks, 2 (1989), 183-192.

[6] M. Gai-S. Casertano-D. Carollo-M. G. Lattanzi, Location estimators for interferometric fringe, Publ. Astron. Soc. Pac., 110 (1998), 848-862.

[7] M. Gai-D. Carollo-M. Delbó-M. G. Lattanzi-G. Massone-F. Bertinetto-G. Mana-S. Cesare, Location accuracy limitations for CCD cameras, A&A, 367 (2001), 362-370.

[8] S. Haykin, Neural Networks, a Comprehensive Foundation IEEE Computer Society Press, 1994. | Zbl

[9] K. Hornik-M. Stinchcombe-H. White, Multilayer feedforward networks are universal approximators, Neural Networks, 2 (1989), 359-366.

[10] M. Loyd-Hart-P. Wizinowich-B. Mcleod-D. Wittman-D. Colucci-R. Dekany-D. Mccarthy-J. R. P. Angel-D. Sandler, First Results of an On-line Adaptive Optics System with Atmospheric Wavefront Sensing by an Artificial Neural Network, ApJ, 390 (1992), L41-44.

[11] M. Minsky-S. Papert, Perceptrons, Cambridge, MA:MIT Press, 1969. | Zbl

[12] D. Rumelhart-G. E. Hinton-R. J. Williams, Learning internal representation by error propagation. Parallel Distribuited Processing (PDP): Exploration in the Microstructure of Cognition, MIT Press, Cambridge, Massachussetts, 1 (1986), 318-362.

[13] P. Wizinowich-M. Loyd-Hart-R. Angel, Adaptive Optics for Array Telescopes Using Neural Networks Techniques on Transputers, Transputing '91, IOS Press, Washington D.C., 1 (1991), 170-183.