Function approximation of Seidel aberrations by a neural network
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 687-696
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
This paper deals with the possibility of using a feedforward neural network to test the discrepancies between a real astronomical image and a predefined template. This task can be accomplished thanks to the capability of neural networks to solve a nonlinear approximation problem, i.e. to construct an hypersurface that approximates a given set of scattered data couples. Images are encoded associating each of them with some conveniently chosen statistical moments, evaluated along the $\{x, y\}$ axes; in this way a parsimonious method is obtained that allows a really effective approach to Seidel aberration diagnostics.
@article{BUMI_2004_8_7B_3_a9,
author = {Cancelliere, Rossella and Gai, Mario},
title = {Function approximation of {Seidel} aberrations by a neural network},
journal = {Bollettino della Unione matematica italiana},
pages = {687--696},
year = {2004},
volume = {Ser. 8, 7B},
number = {3},
zbl = {1182.41017},
mrnumber = {MR2101659},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a9/}
}
TY - JOUR AU - Cancelliere, Rossella AU - Gai, Mario TI - Function approximation of Seidel aberrations by a neural network JO - Bollettino della Unione matematica italiana PY - 2004 SP - 687 EP - 696 VL - 7B IS - 3 UR - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a9/ LA - en ID - BUMI_2004_8_7B_3_a9 ER -
Cancelliere, Rossella; Gai, Mario. Function approximation of Seidel aberrations by a neural network. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 687-696. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a9/