Moltiplicatori spettrali per l'operatore di Ornstein-Uhlenbeck
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 563-591.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Questa è una rassegna di alcuni risultati recenti sui moltiplicatori spettrali dell'operatore di Ornstein-Uhlenbeck, un laplaciano naturale sullo spazio euclideo munito della misura gaussiana. I risultati sono inquadrati nell'ambito della teoria generale dei moltiplicatori spettrali per laplaciani generalizzati.
This is a survey of some recent results on spectral multipliers for the Ornstein-Uhlenbeck operator, a natural Laplacian on the Euclidean space endowed with the Gauss measure. The results are discussed in the framework of the general theory of spectral multipliers for generalized Laplacians.
@article{BUMI_2004_8_7B_3_a2,
     author = {Mauceri, Giancarlo},
     title = {Moltiplicatori spettrali per l'operatore di {Ornstein-Uhlenbeck}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {563--591},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {3},
     year = {2004},
     zbl = {1182.47038},
     mrnumber = {1172944},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a2/}
}
TY  - JOUR
AU  - Mauceri, Giancarlo
TI  - Moltiplicatori spettrali per l'operatore di Ornstein-Uhlenbeck
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 563
EP  - 591
VL  - 7B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a2/
LA  - it
ID  - BUMI_2004_8_7B_3_a2
ER  - 
%0 Journal Article
%A Mauceri, Giancarlo
%T Moltiplicatori spettrali per l'operatore di Ornstein-Uhlenbeck
%J Bollettino della Unione matematica italiana
%D 2004
%P 563-591
%V 7B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a2/
%G it
%F BUMI_2004_8_7B_3_a2
Mauceri, Giancarlo. Moltiplicatori spettrali per l'operatore di Ornstein-Uhlenbeck. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 563-591. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a2/

[1] G. Alexopoulos, Spectral multipliers on Lie groups of polynomial growth, Proc. Amer. Math., 120 (1991), 973-979. | MR | Zbl

[2] J.-P. Anker, $L^p$ Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. of Math. (2), 123, no. 3 (1990), 597-628. | MR | Zbl

[3] J.-P. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J., 65, no. 2 (1992), 257-297. | fulltext mini-dml | MR | Zbl

[4] J.-P. Anker-N. Lohoué, Multiplicateurs sur certains espaces symetriques, Amer. J. Math., 108 (1986), 1303-1353. | MR | Zbl

[5] W. Arendt, Gaussian estimates and interpolation of the spectrum in $L^p$, Differential Integral Equations, 7, no. 5-6 (1994), 1153-1168. | MR | Zbl

[6] F. Astengo, A. class of $L^p$ convolutors on harmonic extensions of $H$-type groups, J. Lie Theory, 5, no. 2 (1995), 147-164. | MR | Zbl

[7] D. Bakry, L'hypercontractivité et son utilisation en théorie des semi-groupes, in Lectures on Probability Theory, D. Bakry, R. D. Gill and S. A. Molchanov editors, Springer Lecture Notes in Mathematics, 1581 (1994), 1-114. | MR | Zbl

[8] J. Boidol, $*$-Regularity of exponential Lie groups, Invent. Math., 56 (1980), 31-238. | MR | Zbl

[9] A. Chojnowska-Michalik-B. Goldys, Symmetric Ornstein-Uhlenbeck semigroups and their generators, Probab. Theory Related Fields, 124, no. 4 (2002), 459-486. | MR | Zbl

[10] M. Christ-D. Müller, On $L^p$ spectral multipliers for a solvable Lie group, Geom. Funct. Anal., 6 (1996), 860-876. | MR | Zbl

[11] J.-L. Clerc-E. M. Stein, $L^p$ multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. U.S.A., 71 (1974), 3911-3912. | MR | Zbl

[12] M. Christ, $L^p$ bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc., 328 (1991), 73-81. | MR | Zbl

[13] R. R. Coifman-G. Weiss, Analyse harmonique non-commutative sur certains espaces homognes. Étude de certaines intégrales singulières, Lecture Notes in Mathematics, Vol. 242. | MR | Zbl

[14] M. Cowling, Harmonic analysis on semigroups, Ann. of Math., 117 (1983), 267-283. | MR | Zbl

[15] M. Cowling-I. Doust-A. Mcintosh-A. Yagi, Banach space operators with a bounded $H^\infty$ functional calculus, J. Austral. Math. Soc., 60 (1996), 51-89. | MR | Zbl

[16] M. Cowling-S. Giulini-G. Gaudry-G. Mauceri, Weak type $(1, 1)$ estimates for heat kernel maximal functions in Lie groups, Trans. Amer. Math. Soc., 323 (1991), 637-649. | MR | Zbl

[17] M. Cowling-S. Giulini-A. Hulanicki-G. Mauceri, Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth, Studia Mathematica, 111 (1994), 103-121. | fulltext mini-dml | MR | Zbl

[18] M. Cowling-A. Sikora, A spectral multiplier theorem on $SU(2)$, Math. Z., 238 (2001), 1-36. | MR | Zbl

[19] G. Da Prato-J. Zabcyk, Ergodicity for infinite-dimensional systems, London Mathematical Society Lecture Note Series, 229, Cambridge University Press, Cambridge, 1996. | MR | Zbl

[20] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tract in Math., 92, Cambridge University Press, Cambridge, 1989. | MR | Zbl

[21] L. De Michele-G. Mauceri, $L^p$ multipliers on the Heisenberg group, Michigan Math. J., 26 (1979), 361-371. | fulltext mini-dml | MR | Zbl

[22] L. De Michele-G. Mauceri, $H^p$ multipliers on stratified groups, Ann. Mat. Pura Appl., 148 (1987), 353-366. | MR | Zbl

[23] P. L. Duren, Theory of $H^p$ spaces, Pure and Applied Math., 38, Academic Press, New York, 1970. | MR | Zbl

[24] J. B. Epperson, The hypercontractive approach to exactly bounding an operator with complex gaussian kernel, J. Funct. Anal., 87 (1989), 1-30. | MR | Zbl

[25] G. B. Folland-E. M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. | Zbl

[26] J. Garcia-Cuerva-G. Mauceri-P. Sjögren-J. L. Torrea, Spectral multipliers for the Ornstein-Uhlenbeck semigroup, J. D'Analyse Math., 78 (1999), 281-305. | MR | Zbl

[27] J. Garcia-Cuerva-G. Mauceri-S. Meda-P. Sjögren-J. L. Torrea, Functional calculus for the Ornstein-Uhlenbeck operator, J. Funct. Anal., 183 (2001), 413-450. | MR | Zbl

[28] S. Giulini-G. Mauceri-S. Meda, $L^p$ multipliers on noncompact symmetric spaces, J. Reine Angew. Math., 482 (1997), 151-175. | MR | Zbl

[29] W. Hebisch, A multiplier theorem for Schrödinger operators, Colloq. Math., 60/61 (1990), 659-661. | MR | Zbl

[30] W. Hebisch, The subalgebra of $L^1(AN)$ generated by the Laplacean, Proc. Amer. Math. Soc., 17 (1993), 547-549. | MR | Zbl

[31] W. Hebisch, Multiplier theorem on generalized Heisenberg groups, Colloq. Math., 65 (1993), 231-239. | MR | Zbl

[32] W. Hebisch, Spectral multipliers on exponential growth solvable Lie groups, Math. Zeitschr., 229 (1998), 435-441. | MR | Zbl

[33] W. Hebisch-G. Mauceri-S. Meda, Holomorphy of spectral multipliers of the Ornstein-Uhlenbeck operator, in stampa su J. Funct. Anal. | MR | Zbl

[34] W. Hebisch-J. Ludwig-D. Muller, Sub-Laplacians of holomorphic $L^p$-type on exponential solvable groups, arXiv:math.CA/0307051. | fulltext mini-dml | Zbl

[35] S. Helgason, Groups and geometric analysis, Integral geometry, invariant differential operators, and spherical functions, Mathematical Surveys and Monographs 83, American Mathematical Society, Providence, RI, 2000. | MR | Zbl

[36] L. Hörmander, Estimates for translation invariant operators in $L^p$ spaces, Acta Math., 104 (1960), 93-140. | MR | Zbl

[37] A. Ionescu, Singular integrals on symmetric spaces of real rank one, Duke Math. J., 114, no. 1 (2002), 101-122. | fulltext mini-dml | MR | Zbl

[38] A. Ionescu, Singular integrals on symmetric spaces II, Trans. Amer. Math. Soc., 355, no. 8 (2003), 3359-3378. | MR | Zbl

[39] N. Kalton-L. Weis, The $H^\infty$-calculus and sums of closed operators, Math. Ann., 321 (2001), 319-345. | MR | Zbl

[40] P. C. Kunstmann-Z. Strkalji, $H^\infty$-calculus for submarkovian generators, Proc. Amer. Math. Soc., 131, no. 7 (2003), 2081-2088. | MR | Zbl

[41] L. Larson-Cohn, $L^p$-norms of Hermite polynomials and an extremal problem on Wiener chaos, Ark. Math., 40, no. 1 (2002), 133-144. | MR | Zbl

[42] J. Ludwig-D. Müller, Sub-Laplacians of holomorphic $L^p$ type on rank one $AN$-groups and related solvable groups, J. Funct. Anal., 170 (2000), 366-427. | MR | Zbl

[43] V. A. Liskevich-M. A. Perelmuter, Analyticity of submarkovian semigroups, Proc. Amer. Math. Soc., 123 (1995), 1097-1104. | MR | Zbl

[44] N. Lohoué-T. Rychener, Die Resolvente von $\Delta$ auf symmetrischen Räumen von nichtkompakten Typ, Comment. Math. Helv., 57, no. 3 (1982), 445-468. | MR | Zbl

[45] G. Mauceri, Zonal multipliers on the Heisenberg group, Pacific J. Math., 95 (1981), 143-159. | fulltext mini-dml | MR | Zbl

[46] G. Mauceri, The Weyl transform and bounded operators on $L^p(\mathbb{R}^n)$, J. Funct. Anal., 39 (1980), 408-429. | MR | Zbl

[47] G. Mauceri-S. Meda, Vector valued inequalities on stratified groups, Rev. Math. Iberoamericana, 6 (1990), 141-154. | MR | Zbl

[48] G. Mauceri-S. Meda-P. Sjögren, Sharp estimates for the Ornstein-Uhlenbeck operator, preprint. | MR | Zbl

[49] S. Meda, A general multiplier theorem, Proc. Amer. Math. Soc., 110 (1990), 639-647. | MR | Zbl

[50] G. Metafune-D. Pallara-E. Priola, Spectrum of Ornstein-Uhlenbeck operators in $L^p$ spaces with respect to invariant measures, J. Funct. Anal., 196, no. 1 (2002), 40-60. | MR | Zbl

[51] G. Metafune-J. Prüss-A. Rhandi-R. Schnaubelt, The domain of the Ornstein-Uhlenbeck operator on an $L^p$-spaces with invariant measure, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1, no. 2 (2002), 471-485. | fulltext mini-dml | MR | Zbl

[52] P. A. Meyer, Notes sur le processus d'Ornstein-Uhlenbeck, Springer Lecture Notes in Mathematics, 920 (1982), 95-132. | fulltext mini-dml | MR | Zbl

[53] S. G. Mihlin, On the multipliers of Fourier integrals, Dok. Akad. Nauk., 109 (1956), 701-703. | MR | Zbl

[54] D. Müller-E. M. Stein, On spectral multipliers for the Heisenberg and related groups, J. Math. Pures Appl., 73 (1994), 413-440. | MR | Zbl

[55] E. Nelson, The free Markov field, J. Funct. Anal., 12 (1973), 211-227. | MR | Zbl

[56] G. Pisier, Riesz transform: a simpler analytic proof of P. A. Meyer's inequality, Springer Lectures Notes in Mathematics, 1321 (1988), 485-501. | fulltext mini-dml | MR | Zbl

[57] M. Reed-B. Simon, Methods of Modern Mathematical Physics. Vol. I. Functional Analysis, Revised and enlarged edition, Academic Press, New York, 1980. | MR | Zbl

[58] E. Sasso, Functional Calculus for the Laguerre Operator, preprint. | MR | Zbl