A note of uniqueness on the Cauchy problem for Schrödinger or heat equations with degenerate elliptic principal parts
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 731-744.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study the local uniqueness in the Cauchy problem for Schrödinger or heat equations whose principal parts are nonnegative. We show the compact uniqueness under a weak form of pseudo convexity. This makes up for the known results under the conormal pseudo convexity given by Tataru, Hörmander, Robbiano- Zuily and L. T'Joen. Our method is based on a kind of integral transform and a weak form of Carleman estimate for degenerate elliptic operators.
In questo articolo studiamo la locale unicità nel problema di Cauchy per equazioni di Schrödinger o del calore con parte principale non negativa. Otteniamo l'unicità compatta sotto la condizione di una forma debole di pseudo convessità. Questo si collega ai risultati noti in ipotesi di pseudo convessità conormale ottenuti da Tataru, Hörmander, Robbiano-Zuily e L. T'Joen. Il nostro metodo si basa su di un tipo di trasformazione integrale ed una forma debole di stime di Carleman per operatori ellittici degeneri.
@article{BUMI_2004_8_7B_3_a12,
     author = {Takuwa, Hideki},
     title = {A note of uniqueness on the {Cauchy} problem for {Schr\"odinger} or heat equations with degenerate elliptic principal parts},
     journal = {Bollettino della Unione matematica italiana},
     pages = {731--744},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {3},
     year = {2004},
     zbl = {1178.35187},
     mrnumber = {1254734},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a12/}
}
TY  - JOUR
AU  - Takuwa, Hideki
TI  - A note of uniqueness on the Cauchy problem for Schrödinger or heat equations with degenerate elliptic principal parts
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 731
EP  - 744
VL  - 7B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a12/
LA  - en
ID  - BUMI_2004_8_7B_3_a12
ER  - 
%0 Journal Article
%A Takuwa, Hideki
%T A note of uniqueness on the Cauchy problem for Schrödinger or heat equations with degenerate elliptic principal parts
%J Bollettino della Unione matematica italiana
%D 2004
%P 731-744
%V 7B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a12/
%G en
%F BUMI_2004_8_7B_3_a12
Takuwa, Hideki. A note of uniqueness on the Cauchy problem for Schrödinger or heat equations with degenerate elliptic principal parts. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 731-744. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a12/

[1] F. Colombini-D. Del Santo-C. Zuily, Uniqueness and non-uniqueness in the Cauchy problem for a degenerate elliptic operator, Amer. J. Math., 115 (1993), 1281-1297. | MR | Zbl

[2] L. Hörmander, Linear Partial Differential Operators, Springer Verlag, 1963. | MR | Zbl

[3] L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer Verlag, 1983-1985. | Zbl

[4] L. Hörmander, On the uniqueness of the Cauchy problem under partial analyticity assumptions, Geometrical Optics and Related Topics, Birkhäuser, 1997, 179-219. | MR | Zbl

[5] L. T'Joen, Uniqueness in the Cauchy problem for quasi-homogeneous operators with partially holomorphic coefficients, Osaka J. Math., 37 (2000), 925-951. | fulltext mini-dml | MR | Zbl

[6] L. Nirenberg, Uniqueness in the Cauchy problem for a degenerate elliptic second order equation, Differential Geometry and Complex Analysis, Springer-Verlag, 1985, 213-218 | MR | Zbl

[7] L. Robbiano, Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques, Comm. Partial Differential Equations, 16 (1991), 789-800. | MR | Zbl

[8] L. Robbiano-C. Zuily, Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients, Invent. Math., 131 (1998), 493-539. | MR | Zbl

[9] D. Del Santo, A Carleman estimate for degenerate elliptic operators with an application to an illposed problem, Boll. U. M. I., 11-B (1997), 327-339. | MR | Zbl

[10] S. Tarama, On the estimate of some conjugation, preprint.

[11] D. Tataru, Unique continuation for solutions to PDE's; between Hörmander's theorem and Holmgren's theorem, Comm. Partial Differential Equations, 20 (1995), 855-884. | Zbl

[12] C. Zuily, Uniqueness and Non-uniqueness in the Cauchy Problem, Progress in Math. 33, Birkhäuser, 1983. | Zbl