Determinanti polinomiali-esponenziali
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 713-730
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
Given $m=2$ or $m=3$ non-zero algebraic numbers $\alpha=(\alpha_{1}, \ldots, \alpha_{m})$ such that $\alpha_{j}/\alpha_{l}$ is not a root of unity for any $j\neq l$ , we consider a class of generalized Vandermonde determinants of order four $G(a; x)$, as $x$ runs over $\mathbb{Z}^{4}$ , involved in some Diophantine problems. We derive an explicit upper bound $N(d)$ for the number of solutions $y\in \mathbb{Z}^{3}$ in general position of the inhomogeneous polynomial-exponential equation $G(a; 0, y)=0$, where the constant $N(d)$ depends only on $d=[\mathbb{Q}(\alpha_{1} , \ldots , \alpha_{m}) : \mathbb{Q}]$.
@article{BUMI_2004_8_7B_3_a11,
author = {Marcovecchio, Raffaele},
title = {Determinanti polinomiali-esponenziali},
journal = {Bollettino della Unione matematica italiana},
pages = {713--730},
year = {2004},
volume = {Ser. 8, 7B},
number = {3},
zbl = {1181.11034},
mrnumber = {MR2101661},
language = {it},
url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a11/}
}
Marcovecchio, Raffaele. Determinanti polinomiali-esponenziali. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 713-730. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a11/