Il sesto problema di Hilbert e le moderne teorie cinetiche.
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 545-562.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In questo contributo si discute qualche problema connesso alla derivazione delle equazioni cinetiche a partire dalla meccanica dei sistemi di particelle.
We discuss some problems arising in the attempts of deriving kinetic equations from the mechanics of particle systems.
@article{BUMI_2004_8_7B_3_a1,
     author = {Pulvirenti, Mario},
     title = {Il sesto problema di {Hilbert} e le moderne teorie cinetiche.},
     journal = {Bollettino della Unione matematica italiana},
     pages = {545--562},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {3},
     year = {2004},
     zbl = {1182.82012},
     mrnumber = {725107},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a1/}
}
TY  - JOUR
AU  - Pulvirenti, Mario
TI  - Il sesto problema di Hilbert e le moderne teorie cinetiche.
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 545
EP  - 562
VL  - 7B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a1/
LA  - it
ID  - BUMI_2004_8_7B_3_a1
ER  - 
%0 Journal Article
%A Pulvirenti, Mario
%T Il sesto problema di Hilbert e le moderne teorie cinetiche.
%J Bollettino della Unione matematica italiana
%D 2004
%P 545-562
%V 7B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a1/
%G it
%F BUMI_2004_8_7B_3_a1
Pulvirenti, Mario. Il sesto problema di Hilbert e le moderne teorie cinetiche.. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 545-562. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a1/

[BBS] C. Boldrighini-C. Bunimovich-Ya. Sinai, On the Boltzmann equation for the Lorentz gas, J. Stat. Phys., 32 (1983), 477-501. | MR | Zbl

[BS] L. A. Bunimovich-Ya. G. Sinai, Statistical properties of the Lorentz gas with periodic configuration of scatterers, Comm. Math. Phys., 78 (1981), 478-497. | fulltext mini-dml | MR | Zbl

[BGW] J. Burgain-F. Golse-B. Wennberg, On the distribution of free path lenght for the periodic Lorentz gas, Comm. Math. Phys., 190 (1998), 491-508. | MR | Zbl

[CPR] E. Caglioti-M. Pulvirenti-V. Ricci, Derivation of a linear Boltzmann equation for a periodic Lorentz gas, Markov Proc. Rel. Fields, 3 (2000), 265-285. | MR | Zbl

[C] C. Cercignani, Ludwig Boltzmann e la Meccanica Statistica, La Goliardica (Pavia), 1998. | MR | Zbl

[C1] C. Cercignani, On the Boltzmann equation for rigid spheres, Transp. Theor. Stat. Phys., (1972), 211-225. | MR | Zbl

[CIP] C. Cercignani-R. Illner-M. Pulvirenti, The mathematical theory of dilute gases, Springer series in Appl. Math., vol. 106, 1994. | MR | Zbl

[DeP] L. Desvillettes-M. Pulvirenti, The linear Boltzmann equation for longrange forces: a derivation from particle systems, Models Methods Appl. Sci., 9 (1999), 1123-1145. | MR | Zbl

[DeR] L. Desvillettes-V. Ricci, Rigorous derivation of a linear kinetic equation of Fokker-Plank type in the limit of grazing collisions, Jour. Stat. Phys., 104 (2001), 1173-1189. | MR | Zbl

[DPL] R. J. Di Perna-P. L. Lions, On the Cauchy problem for the Boltzmann equations: Global existence and weak stability, Annals of Mathematics, 130 (1989), 321-366. | MR | Zbl

[EP] R. Esposito-M. Pulvirenti, From Particles to Fluids, Handbook of Mathematical Fluid Dynamics, North-Holland, vol. 3, S. Frielander and D. Serre editors, 2004. | MR | Zbl

[G1] G. Gallavotti, Divergences and approach to equilibrium in the Lorentz and the Wind-tree models, Physical Review, 185 (1969), 308-322.

[G2] G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas, reprinted in G. Gallavotti Meccanica Statistica, Quaderni del CNR n. 50, Nota interna n. 358 Istituto di Fisica Università di Roma, 1972 (1995), 191-204.

[G] H. Grad, On the kinetic theory of rarified gases, Comm. Pure Appl. Math., 2 (1949), 331-407. | MR | Zbl

[IP] R. Illner-M. Pulvirenti, Global validity of the Boltzmann equation for two and three-dimensional rare gas in vacuum: erratum and improved result, Comm. Math. Phys., 121 (1989), 143-146. | fulltext mini-dml | MR | Zbl

[K] M. Kac, Probability and related topics, Interscience; New York, 1959.

[L] O. Lanford Iii, The evolution of large classical system, Lect. Notes in Physics. Springer, (J. Moser ed.), 35 (1975), 1-111. | MR | Zbl

[M] C. B. Morrey, On the derivation of the equations of hydrodynamics from statistical mechanics, Comm. Pure Appl. Math., 8 (1955), 279-326. | MR | Zbl

[S] H. Spohn, The Lorentz flight process converges to a random flight process, Comm. Math. Phys., 60 (1978), 277-290. | fulltext mini-dml | MR | Zbl

[U] K. Uchiyama, On the Boltzmann-Grad limit for the Broadwell model of the Boltzmann equation, J. Statist. Phys., 52 (1988), 331-355. | MR | Zbl