Problema di trasporto e equazione di Cauchy per campi vettoriali a variazione limitata
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 529-543.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In questa conferenza descrivo alcuni recenti sviluppi relativi al problema dell'unicità per l'equazione differenziale ordinaria e per l'equazione di continuità per campi vettoriali debolmente differenziabili. Descrivo infine un'applicazione di questi risultati a un sistema di leggi di conservazione.
In this talk I will illustrate some recent progress on the uniqueness problem for the transport equation and the ordinary differential equation associated to a weakly differentiable vector field. An application to a system of conservation laws will also be illustrated.
@article{BUMI_2004_8_7B_3_a0,
     author = {Ambrosio, Luigi},
     title = {Problema di trasporto e equazione di {Cauchy} per campi vettoriali a variazione limitata},
     journal = {Bollettino della Unione matematica italiana},
     pages = {529--543},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {3},
     year = {2004},
     zbl = {1182.35083},
     mrnumber = {482853},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a0/}
}
TY  - JOUR
AU  - Ambrosio, Luigi
TI  - Problema di trasporto e equazione di Cauchy per campi vettoriali a variazione limitata
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 529
EP  - 543
VL  - 7B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a0/
LA  - it
ID  - BUMI_2004_8_7B_3_a0
ER  - 
%0 Journal Article
%A Ambrosio, Luigi
%T Problema di trasporto e equazione di Cauchy per campi vettoriali a variazione limitata
%J Bollettino della Unione matematica italiana
%D 2004
%P 529-543
%V 7B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a0/
%G it
%F BUMI_2004_8_7B_3_a0
Ambrosio, Luigi. Problema di trasporto e equazione di Cauchy per campi vettoriali a variazione limitata. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 529-543. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a0/

[1] M. Aizenman, On vector fields as generators of flows: a counterexample to Nelson's conjecture, Ann. Math., 107 (1978), 287-296. | MR | Zbl

[2] G. Alberti, Rank-one properties for derivatives of functions with bounded variation, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 239-274. | MR | Zbl

[3] G. Alberti-L. Ambrosio, A geometric approach to monotone functions in $\mathbb{R}^n$, Math. Z., 230 (1999), 259-316. | MR | Zbl

[4] F. J. Almgren, The theory of varifolds - A variational calculus in the large, Princeton University Press, 1972.

[5] L. Ambrosio-N. Fusco-D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, 2000. | MR | Zbl

[6] L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, In corso di stampa su Inventiones Math.. | Zbl

[7] L. Ambrosio-C. De Lellis, Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions, International Mathematical Research Notices, 41 (2003), 2205-2220. | MR | Zbl

[8] L. Ambrosio-F. Bouchut-C. De Lellis, Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions, Di prossima pubblicazione su Comm. PDE, disponibile su http://cvgmt.sns.it. | Zbl

[9] L. Ambrosio-N. Gigli-G. Savaré, Gradient flows in metric spaces and in the Wasserstein space of probability measures, Libro di prossima pubblicazione a cura di Birkhäuser.

[10] F. Bouchut-F. James, One dimensional transport equation with discontinuous coefficients, Nonlinear Analysis, 32 (1998), 891-933. | MR | Zbl

[11] F. Bouchut, Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Rational Mech. Anal., 157 (2001), 75-90. | MR | Zbl

[12] A. Bressan, An ill posed Cauchy problem for a hyperbolic system in two space dimensions, Rend. Sem. Mat. Univ. Padova, 110 (2003), 103-117. | fulltext mini-dml | MR | Zbl

[13] I. Capuzzo Dolcetta-B. Perthame, On some analogy between different approaches to first order PDE's with nonsmooth coefficients, Adv. Math. Sci Appl., 6 (1996), 689-703. | MR | Zbl

[14] A. Cellina, On uniqueness almost everywhere for monotonic differential inclusions, Nonlinear Analysis, TMA, 25 (1995), 899-903. | MR | Zbl

[15] A. Cellina-M. Vornicescu, On gradient flows, Journal of Differential Equations, 145 (1998), 489-501. | MR | Zbl

[16] F. Colombini-N. Lerner, Uniqueness of continuous solutions for BV vector fields, Duke Math. J., 111 (2002), 357-384. | fulltext mini-dml | MR | Zbl

[17] F. Colombini-N. Lerner, Uniqueness of $L^\infty$ solutions for a class of conormal BV vector fields, Preprint, 2003. | MR

[18] F. Colombini-T. Luo-J. Rauch, Uniqueness and nonuniqueness for nonsmooth divergence-free transport, Preprint, 2003. | MR | Zbl

[19] C. Dafermos, Hyperbolic conservation laws in continuum physics, Springer Verlag, 2000. | MR | Zbl

[20] N. De Pauw, Non unicité des solutions bornées pour un champ de vecteurs $BV$ en dehors d'un hyperplan, C. R. Math. Sci. Acad. Paris, 337 (2003), 249-252. | MR | Zbl

[21] R. J. Di Perna-P. L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547. | MR | Zbl

[22] M. Hauray, On Liouville transport equation with potential in $BV_{\text{loc}}$, (2003) Di prossima pubblicazione su Comm. in PDE.

[23] M. Hauray, On two-dimensional Hamiltonian transport equations with $L^p_{\text{loc}}$ coefficients, (2003) Di prossima pubblicazione su Ann. Nonlinear Analysis IHP. | fulltext mini-dml | Zbl

[24] L. V. Kantorovich, On the transfer of masses, Dokl. Akad. Nauk. SSSR, 37 (1942), 227-229.

[25] B. L. Keyfitz-H. C. Kranzer, A system of nonstrictly hyperbolic conservation laws arising in elasticity theory, Arch. Rational Mech. Anal., 72 (1980), 219- 241. | MR | Zbl

[26] P. L. Lions, Sur les équations différentielles ordinaires et les équations de transport, C. R. Acad. Sci. Paris Sér. I, 326 (1998), 833-838. | MR | Zbl

[27] G. Petrova-B. Popov, Linear transport equation with discontinuous coefficients, Comm. PDE, 24 (1999), 1849-1873. | MR | Zbl

[28] F. Poupaud-M. Rascle, Measure solutions to the liner multidimensional transport equation with non-smooth coefficients, Comm. PDE, 22 (1997), 337-358. | MR | Zbl

[29] L. C. Young, Lectures on the calculus of variations and optimal control theory, Saunders, 1969. | MR | Zbl