Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2004_8_7B_3_a0, author = {Ambrosio, Luigi}, title = {Problema di trasporto e equazione di {Cauchy} per campi vettoriali a variazione limitata}, journal = {Bollettino della Unione matematica italiana}, pages = {529--543}, publisher = {mathdoc}, volume = {Ser. 8, 7B}, number = {3}, year = {2004}, zbl = {1182.35083}, mrnumber = {482853}, language = {it}, url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a0/} }
TY - JOUR AU - Ambrosio, Luigi TI - Problema di trasporto e equazione di Cauchy per campi vettoriali a variazione limitata JO - Bollettino della Unione matematica italiana PY - 2004 SP - 529 EP - 543 VL - 7B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a0/ LA - it ID - BUMI_2004_8_7B_3_a0 ER -
%0 Journal Article %A Ambrosio, Luigi %T Problema di trasporto e equazione di Cauchy per campi vettoriali a variazione limitata %J Bollettino della Unione matematica italiana %D 2004 %P 529-543 %V 7B %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a0/ %G it %F BUMI_2004_8_7B_3_a0
Ambrosio, Luigi. Problema di trasporto e equazione di Cauchy per campi vettoriali a variazione limitata. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 3, pp. 529-543. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_3_a0/
[1] On vector fields as generators of flows: a counterexample to Nelson's conjecture, Ann. Math., 107 (1978), 287-296. | MR | Zbl
,[2] Rank-one properties for derivatives of functions with bounded variation, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 239-274. | MR | Zbl
,[3] A geometric approach to monotone functions in $\mathbb{R}^n$, Math. Z., 230 (1999), 259-316. | MR | Zbl
- ,[4] The theory of varifolds - A variational calculus in the large, Princeton University Press, 1972.
,[5] Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, 2000. | MR | Zbl
- - ,[6] Transport equation and Cauchy problem for BV vector fields, In corso di stampa su Inventiones Math.. | Zbl
,[7] Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions, International Mathematical Research Notices, 41 (2003), 2205-2220. | MR | Zbl
- ,[8] Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions, Di prossima pubblicazione su Comm. PDE, disponibile su http://cvgmt.sns.it. | Zbl
- - ,[9] Gradient flows in metric spaces and in the Wasserstein space of probability measures, Libro di prossima pubblicazione a cura di Birkhäuser.
- - ,[10] One dimensional transport equation with discontinuous coefficients, Nonlinear Analysis, 32 (1998), 891-933. | MR | Zbl
- ,[11] Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Rational Mech. Anal., 157 (2001), 75-90. | MR | Zbl
,[12] An ill posed Cauchy problem for a hyperbolic system in two space dimensions, Rend. Sem. Mat. Univ. Padova, 110 (2003), 103-117. | fulltext mini-dml | MR | Zbl
,[13] On some analogy between different approaches to first order PDE's with nonsmooth coefficients, Adv. Math. Sci Appl., 6 (1996), 689-703. | MR | Zbl
- ,[14] On uniqueness almost everywhere for monotonic differential inclusions, Nonlinear Analysis, TMA, 25 (1995), 899-903. | MR | Zbl
,[15] On gradient flows, Journal of Differential Equations, 145 (1998), 489-501. | MR | Zbl
- ,[16] Uniqueness of continuous solutions for BV vector fields, Duke Math. J., 111 (2002), 357-384. | fulltext mini-dml | MR | Zbl
- ,[17] Uniqueness of $L^\infty$ solutions for a class of conormal BV vector fields, Preprint, 2003. | MR
- ,[18] Uniqueness and nonuniqueness for nonsmooth divergence-free transport, Preprint, 2003. | MR | Zbl
- - ,[19] Hyperbolic conservation laws in continuum physics, Springer Verlag, 2000. | MR | Zbl
,[20] Non unicité des solutions bornées pour un champ de vecteurs $BV$ en dehors d'un hyperplan, C. R. Math. Sci. Acad. Paris, 337 (2003), 249-252. | MR | Zbl
,[21] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547. | MR | Zbl
- ,[22] On Liouville transport equation with potential in $BV_{\text{loc}}$, (2003) Di prossima pubblicazione su Comm. in PDE.
,[23] On two-dimensional Hamiltonian transport equations with $L^p_{\text{loc}}$ coefficients, (2003) Di prossima pubblicazione su Ann. Nonlinear Analysis IHP. | fulltext mini-dml | Zbl
,[24] On the transfer of masses, Dokl. Akad. Nauk. SSSR, 37 (1942), 227-229.
,[25] A system of nonstrictly hyperbolic conservation laws arising in elasticity theory, Arch. Rational Mech. Anal., 72 (1980), 219- 241. | MR | Zbl
- ,[26] Sur les équations différentielles ordinaires et les équations de transport, C. R. Acad. Sci. Paris Sér. I, 326 (1998), 833-838. | MR | Zbl
,[27] Linear transport equation with discontinuous coefficients, Comm. PDE, 24 (1999), 1849-1873. | MR | Zbl
- ,[28] Measure solutions to the liner multidimensional transport equation with non-smooth coefficients, Comm. PDE, 22 (1997), 337-358. | MR | Zbl
- ,[29] Lectures on the calculus of variations and optimal control theory, Saunders, 1969. | MR | Zbl
,