A note on global Nash subvarieties and Artin-Mazur theorem
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 425-431.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

It is shown that every connected global Nash subvariety of $\mathbb{R}^{n}$ is Nash isomorphic to a connected component of an algebraic variety that, in the compact case, can be chosen with only two connected components arbitrarily near each other. Some examples which state the limits of the given results and of the used tools are provided.
Si prova che ogni sottospazio di Nash connesso di $\mathbb{R}^{n}$ che abbia equazioni globali è Nash isomorfo ad una componente connessa di una varietà algebrica che, nel caso compatto, può essere scelta con due sole componenti connesse arbitrariamente vicine. Alcuni esempi illustrano i limiti dei risultati ottenuti e degli strumenti utilizzati.
@article{BUMI_2004_8_7B_2_a9,
     author = {Tancredi, Alessandro and Tognoli, Alberto},
     title = {A note on global {Nash} subvarieties and {Artin-Mazur} theorem},
     journal = {Bollettino della Unione matematica italiana},
     pages = {425--431},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {2},
     year = {2004},
     zbl = {1150.14015},
     mrnumber = {1225577},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a9/}
}
TY  - JOUR
AU  - Tancredi, Alessandro
AU  - Tognoli, Alberto
TI  - A note on global Nash subvarieties and Artin-Mazur theorem
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 425
EP  - 431
VL  - 7B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a9/
LA  - en
ID  - BUMI_2004_8_7B_2_a9
ER  - 
%0 Journal Article
%A Tancredi, Alessandro
%A Tognoli, Alberto
%T A note on global Nash subvarieties and Artin-Mazur theorem
%J Bollettino della Unione matematica italiana
%D 2004
%P 425-431
%V 7B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a9/
%G en
%F BUMI_2004_8_7B_2_a9
Tancredi, Alessandro; Tognoli, Alberto. A note on global Nash subvarieties and Artin-Mazur theorem. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 425-431. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a9/

[AK] S. Akbulut-H. King, Topology of real algebraic sets, Maht. Sci. Research Institute Publ. 25, Springer, Berlin (1992). | MR | Zbl

[BCR] J. Bochnack-M. Coste-M. F. Roy, Real algebraic geometry, Springer, Berlin, 1998. | MR | Zbl

[CRS] M. Coste-R. Ruiz-M. Shiota, Approximation in Nash manifolds, Amer. J. Math., 117 (1995), 905-927. | MR | Zbl

[CS] M. Coste-M. Shiota, Nash functions on noncompact Nash manifolds, Ann. Scient. Éc. Norm. Sup., 33 (2000), 139-149. | fulltext mini-dml | MR | Zbl

[EV] S. Encinas-O. Villamayor, A new theorem of desingularization over fields of characteristic zero, Preprint arXiv:math.AG/0101208 | fulltext mini-dml

[NT] G. Nardelli-A. Tancredi, A note on the extension of analytic functions off real analytic subsets, Revista Matemática de la Universidad Complutense de Madrid, 9 (1996), 85-99. | MR | Zbl

[TT1] A. Tancredi-A. Tognoli, On the extension of Nash functions, Math. Ann. 288 (1990), 595-604. | MR | Zbl

[TT2] A. Tancredi-A. Tognoli, Some remarks on the classification of complex Nash vector bundles, Bull. Sci. math., 17 (1993), 177-183. | MR | Zbl

[TT3] A. Tancredi-A. Tognoli, On the algebraic approximation of Nash maps, Ann. Univ. Ferrara, 38 (1992), 107-115. | MR | Zbl

[To] A. Tognoli, Algebraic approximation of manifolds and spaces, Sém. Bourbaki, 548 (1979/80). | fulltext mini-dml | Zbl

[Wa] A. H. Wallace, Algebraic approximation of manifolds, Proc. London Math. Soc. (3), 7 (1957), 196-210. | MR | Zbl