A note on global Nash subvarieties and Artin-Mazur theorem
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 425-431 Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica

Voir la notice de l'article

It is shown that every connected global Nash subvariety of $\mathbb{R}^{n}$ is Nash isomorphic to a connected component of an algebraic variety that, in the compact case, can be chosen with only two connected components arbitrarily near each other. Some examples which state the limits of the given results and of the used tools are provided.
@article{BUMI_2004_8_7B_2_a9,
     author = {Tancredi, Alessandro and Tognoli, Alberto},
     title = {A note on global {Nash} subvarieties and {Artin-Mazur} theorem},
     journal = {Bollettino della Unione matematica italiana},
     pages = {425--431},
     year = {2004},
     volume = {Ser. 8, 7B},
     number = {2},
     zbl = {1150.14015},
     mrnumber = {MR2072945},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a9/}
}
TY  - JOUR
AU  - Tancredi, Alessandro
AU  - Tognoli, Alberto
TI  - A note on global Nash subvarieties and Artin-Mazur theorem
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 425
EP  - 431
VL  - 7B
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a9/
LA  - en
ID  - BUMI_2004_8_7B_2_a9
ER  - 
%0 Journal Article
%A Tancredi, Alessandro
%A Tognoli, Alberto
%T A note on global Nash subvarieties and Artin-Mazur theorem
%J Bollettino della Unione matematica italiana
%D 2004
%P 425-431
%V 7B
%N 2
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a9/
%G en
%F BUMI_2004_8_7B_2_a9
Tancredi, Alessandro; Tognoli, Alberto. A note on global Nash subvarieties and Artin-Mazur theorem. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 425-431. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a9/