A note on global Nash subvarieties and Artin-Mazur theorem
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 425-431
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
It is shown that every connected global Nash subvariety of $\mathbb{R}^{n}$ is Nash isomorphic to a connected component of an algebraic variety that, in the compact case, can be chosen with only two connected components arbitrarily near each other. Some examples which state the limits of the given results and of the used tools are provided.
@article{BUMI_2004_8_7B_2_a9,
author = {Tancredi, Alessandro and Tognoli, Alberto},
title = {A note on global {Nash} subvarieties and {Artin-Mazur} theorem},
journal = {Bollettino della Unione matematica italiana},
pages = {425--431},
publisher = {mathdoc},
volume = {Ser. 8, 7B},
number = {2},
year = {2004},
zbl = {1150.14015},
mrnumber = {MR2072945},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a9/}
}
TY - JOUR AU - Tancredi, Alessandro AU - Tognoli, Alberto TI - A note on global Nash subvarieties and Artin-Mazur theorem JO - Bollettino della Unione matematica italiana PY - 2004 SP - 425 EP - 431 VL - 7B IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a9/ LA - en ID - BUMI_2004_8_7B_2_a9 ER -
Tancredi, Alessandro; Tognoli, Alberto. A note on global Nash subvarieties and Artin-Mazur theorem. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 425-431. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a9/