Entropy flux far from equilibrium in solids and in non viscous gases
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 381-396.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

One of the main question arising in Extended Thermodynamics concerns the physical meaning of the temperature far from equilibrium. Some authors define thermodynamic temperature $T_{th}$ the inverse of the coefficient linking the entropy flux with the heat flux. Other authors, instead, define non-equilibrium temperature $\theta$ the inverse of the partial derivative of entropy with respect to energy, at density and heat flux constant. The aim of this paper is to determine the expression of entropy flux in some materials when phenomena far from equilibrium are considered, using the formulation of Extended Thermodynamics which uses the Lagrange multipliers, known as Rational Extended Thermodynamics. The case of thermal propagation that occurs in low-temperature crystals and the case of non viscous gases subject to heating are considered. It is shown that the non-equilibrium temperature and the thermodynamic temperature not agree, except near equilibrium, when second order terms in $q_i$ can be neglected. Approximate expressions for $T_{th}$ and $\theta$ are determined in both cases.
Una delle principali questioni che sorge nella termodinamica estesa riguarda il significato fisico della temperatura lontano dall'equilibrio. Alcuni autori definiscono temperatura termodinamica $T_{th}$ il reciproco del coefficiente che lega il flusso di entropia e il flusso di calore. Altri autori, invece, definiscono temperatura di non-equilibrio $\theta$ il reciproco della derivata parziale dell'entropia rispetto all'energia a densità e flusso di calore costanti. Lo scopo fondamentale di questo lavoro è di determinare le espressioni complete del flusso di entropia in alcuni materiali quando vengono considerati fenomeni lontano dall'equilibrio termodinamico. Per tale scopo si utilizza la formulazione della termodinamica estesa, conosciuta come Termodinamica Estesa Razionale, che usa i moltiplicatori di Lagrange. Si prendono in esame due situazioni fisiche particolarmente semplici ma molto importanti: il caso della propagazione termica che avviene nei cristalli a bassa temperatura e il caso dei gas non viscosi soggetti a riscaldamento. Si mostra che la temperatura di non-equilibrio e la temperatura termodinamica in generale non coincidono, e si determinano le espressioni approssimate della loro differenza
@article{BUMI_2004_8_7B_2_a7,
     author = {Mongiov{\`\i}, M. S. and Peruzza, R. A.},
     title = {Entropy flux far from equilibrium in solids and in non viscous gases},
     journal = {Bollettino della Unione matematica italiana},
     pages = {381--396},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {2},
     year = {2004},
     zbl = {1177.74038},
     mrnumber = {1088383},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a7/}
}
TY  - JOUR
AU  - Mongiovì, M. S.
AU  - Peruzza, R. A.
TI  - Entropy flux far from equilibrium in solids and in non viscous gases
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 381
EP  - 396
VL  - 7B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a7/
LA  - en
ID  - BUMI_2004_8_7B_2_a7
ER  - 
%0 Journal Article
%A Mongiovì, M. S.
%A Peruzza, R. A.
%T Entropy flux far from equilibrium in solids and in non viscous gases
%J Bollettino della Unione matematica italiana
%D 2004
%P 381-396
%V 7B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a7/
%G en
%F BUMI_2004_8_7B_2_a7
Mongiovì, M. S.; Peruzza, R. A. Entropy flux far from equilibrium in solids and in non viscous gases. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 381-396. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a7/

[1] A. M. Anile-S. Pennisi-M. Sammartino, A thermodynamical approach to Eddington factors, J. Math. Phys., 32 (2), (1991), 544-550. | MR | Zbl

[2] J. Au-I. Müller-T. Ruggeri, Temperature jumps at the boundary of a rarifield gas, Continuum Mech. Thermodyn., 12 (2000), 19-29. | MR | Zbl

[3] E. Barbera-I. Müller-M. Sugiyama, On the temperatures of a rarefieds gas in non-equilibrium, Meccanica, 34 (1999), 103-113. | Zbl

[4] C. Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena, 3 (1948), 83-101. | MR | Zbl

[5] R. Dominguez-Cascante-D. Jou, Entropy Flux and Absolute temperature in Extended Irreversible Thermodynamics, J. Non-Equilib. Thermodyn., 20 (1995), 263-273. | Zbl

[6] H. Grad, Principles of the kinetic theory of gases, Handbuch der Physik XII, Thermodynamik der Gase, Springer-Verlag, Berlin (1958), 205-294. | MR

[7] R. A. Guyer-J. A. Krumhansl, Solution of the linearized phonon Boltzmann equation, Phys. Rev., 148 (2), (1966), 766-778.

[8] R. A. Guyer-J. A. Krumhansl, Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetal crystals, Phys. Rev., 148 (2), (1966), 778-788.

[9] D. Jou-J. Casas-Vázquez-G. Lebon, Extended Irreversible Thermodynamics revisited (1988-1998), Rep. Prog. Phys., 62 (1999), 1035-1142. | MR | Zbl

[10] D. Jou-J. Casas-Vázquez-G. Lebon, Extended Irreversible Thermodunamics, Springer-Verlag, Berlin (2001). | Zbl

[11] D. Jou-J. Casas-Vázquez, Possible experiment to check the reality of a nonequilibrium temperature, Phys. Rev. A, 45 (12), (1992), 8371-8373.

[12] J. Casas-Vázquez-D. Jou, Nonequilibrium temperature versus local-equilibrium temperature, Phys. Rev. E, 49 (2) (1994), 1040-1048.

[13] G. M. Kremer, On extended thermodynamics of ideal and real gases, Extended Thermodynamics Systems, Sieniutycz S. and Salamon P. editors, Taylor and Francis (1992), 140-182.

[14] I. Liu, Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Rat. Mech. Anal., 46 (1972), 131-148. | MR | Zbl

[15] I. Liu-I. Müller, Extended Thermodynamics of classical and degenerate gases, Arch. Rat. Mech. Anal., 83 (4) (1983), 285-332. | MR | Zbl

[16] M. S. Mongiovì, Some considerations about Nonlinear Extended Thermodynamic Theories with different number of fields, J. Non-Equilib. Thermodyn., 24 (1999), 147-153. | Zbl

[17] M. S. Mongiovì, Thermodynamic pressure in nonlinear nonequilibrium thermodynamics of dilute nonviscous gases, Phys. Rev. E, 63 (2001), 1-4. | Zbl

[18] M. S. Mongiovì, Non-linear Non-viscous Hydrodynamical Models for Charge Transport in the framework of Extended Thermodynamic methods, Math. Comp. Modelling, 35 (2002), 813-820. | Zbl

[19] M. S. Mongiovì, Nonlinear Extended Thermodynamics of a Diluite Nonviscous Gas, Math. Comp. Modelling, 36 (2002), 951-962. | MR | Zbl

[20] I. Müller-T. Ruggeri, Rational Extended Thermodynamics, Springer-Verlag, Berlin (1998). | MR | Zbl

[21] G. F. Smith, On isotropic Integrity Bases, Arch.Rat.Mech.Anal., 18, (1965), 282-292. | MR | Zbl

[22] T. Ruggeri-A. Muracchini-L. Seccia, Continuum approach to Phonon Gas and Shape Changes of Second Sound via Shock Waves Theory, Il Nuovo Cimento D, 16 (1), (1994), 15-44.

[23] A. Valenti-M. Torrisi-G. Lebon, Shock Waves in Crystalline Dielettrics at Low Temperature, J. Phys.: Condens.Matter, 14 (2002), 3553-3564.

[24] C. C. Wang, A new representation theorem for isotropic functions, Arch. Rat. Mech. Anal., 36 (1970), 166-197. | MR | Zbl