Grassmann defective surfaces
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 369-379

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A projective variety $V$ is $(1, h)$-defective if the Grassmannian of lines contained in the span of $h+1$ independent points on $V$ has dimension less than the expected one. In the present paper, which is inspired by classical work of Alessandro Terracini, we prove a criterion of $(1, h)$-defectivity for algebraic surfaces and we discuss its applications to Veronese embeddings and to rational normal scrolls.
@article{BUMI_2004_8_7B_2_a6,
     author = {Fontanari, Claudio},
     title = {Grassmann defective surfaces},
     journal = {Bollettino della Unione matematica italiana},
     pages = {369--379},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {2},
     year = {2004},
     zbl = {1150.14014},
     mrnumber = {MR2072942},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a6/}
}
TY  - JOUR
AU  - Fontanari, Claudio
TI  - Grassmann defective surfaces
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 369
EP  - 379
VL  - 7B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a6/
LA  - en
ID  - BUMI_2004_8_7B_2_a6
ER  - 
%0 Journal Article
%A Fontanari, Claudio
%T Grassmann defective surfaces
%J Bollettino della Unione matematica italiana
%D 2004
%P 369-379
%V 7B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a6/
%G en
%F BUMI_2004_8_7B_2_a6
Fontanari, Claudio. Grassmann defective surfaces. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 369-379. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a6/