Grassmann defective surfaces
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 369-379
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
A projective variety $V$ is $(1, h)$-defective if the Grassmannian of lines contained in the span of $h+1$ independent points on $V$ has dimension less than the expected one. In the present paper, which is inspired by classical work of Alessandro Terracini, we prove a criterion of $(1, h)$-defectivity for algebraic surfaces and we discuss its applications to Veronese embeddings and to rational normal scrolls.
@article{BUMI_2004_8_7B_2_a6,
author = {Fontanari, Claudio},
title = {Grassmann defective surfaces},
journal = {Bollettino della Unione matematica italiana},
pages = {369--379},
publisher = {mathdoc},
volume = {Ser. 8, 7B},
number = {2},
year = {2004},
zbl = {1150.14014},
mrnumber = {MR2072942},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a6/}
}
Fontanari, Claudio. Grassmann defective surfaces. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 369-379. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a6/