Construction of a natural norm for the convection-diffusion-reaction operator
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 335-355.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this work, we construct, by means of the function space interpolation theory, a natural norm for a generic linear coercive and non-symmetric operator. We look for a norm which is the counterpart of the energy norm for symmetric operators. The natural norm allows for continuity and inf-sup conditions independent of the operator. Particularly we consider the convection-diffusion-reaction operator, for which we obtain continuity and inf-sup conditions that are uniform with respect to the operator coefficients, and therefore meaningful in the convectiondominant regime. Our results are preliminary to a deeper understanding and analysis of the numerical techniques for non-symmetric problems.
In questo lavoro si costruisce, mediante interpolazione, una norma naturale per operatori lineari continui coercivi e non simmetrici. Più precisamente, si cerca una norma con stesse le proprietà che ha la norma dell'energia quando si considerano operatori simmetrici: si dimostrano cioè, rispetto a tale norma, stime di continuità e di inf-sup indipendenti dall'operatore. In particolare, si prende in considerazione l'operatore di diffusione-trasporto-reazione lineare: si ottengono quindi stime di continuità e inf-sup indipendenti dai coefficienti dell'operatore, pertanto significative anche nel regime di trasporto dominante. I risultati qui presentati possono servire ad una più approfindita comprensione e analisi di tecniche numeriche per problemi non simmetrici.
@article{BUMI_2004_8_7B_2_a4,
     author = {Sangalli, Giancarlo},
     title = {Construction of a natural norm for the convection-diffusion-reaction operator},
     journal = {Bollettino della Unione matematica italiana},
     pages = {335--355},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {2},
     year = {2004},
     zbl = {1150.35455},
     mrnumber = {1860970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a4/}
}
TY  - JOUR
AU  - Sangalli, Giancarlo
TI  - Construction of a natural norm for the convection-diffusion-reaction operator
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 335
EP  - 355
VL  - 7B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a4/
LA  - en
ID  - BUMI_2004_8_7B_2_a4
ER  - 
%0 Journal Article
%A Sangalli, Giancarlo
%T Construction of a natural norm for the convection-diffusion-reaction operator
%J Bollettino della Unione matematica italiana
%D 2004
%P 335-355
%V 7B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a4/
%G en
%F BUMI_2004_8_7B_2_a4
Sangalli, Giancarlo. Construction of a natural norm for the convection-diffusion-reaction operator. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 335-355. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a4/

[1] A. Barinka-T. Barsch-P. Charton-A. Cohen-S. Dahlke-W. Dahmen-K. Urban, Adaptive wavelet schemes for elliptic problems-implementation and numerical experiments, SIAM J. Sci. Comput., 23 (2001), 910-939 (electronic). | MR | Zbl

[2] S. Bertoluzza-C. Canuto-A. Tabacco, Stable discretizations of convection-diffusion problems via computable negative-order inner products, SIAM J. Numer. Anal., 38 (2000), 1034-1055 (electronic). | MR | Zbl

[3] S. Bertoluzza-M. Verani, Convergence of a nonlinear wavelet algorithm for the solution of PDEs, Appl. Math. Lett., 16 (2003), 113-118. | MR | Zbl

[4] J. H. Bramble-R. D. Lazarov-J. E. Pasciak, Least-squares for second-order elliptic problems, Comput. Methods Appl. Mech. Engrg., 152 (1998), 195-210. Symposium on Advances in Computational Mechanics, Vol. 5 (Austin, TX, 1997). | MR | Zbl

[5] F. Brezzi-M. Fortin, Mixed and hybrid finite element methods, Springer-Verlag, New York, 1991. | MR | Zbl

[6] A. Cohen-W. Dahmen-R. Devore, Adaptive wavelet methods for elliptic operator equations: convergence rates, Math. Comp., 70 (2001), 27-75 (electronic). | MR | Zbl

[7] A. Cohen-W. Dahmen-R. Devore, Adaptive wavelet methods. II. Beyond the elliptic case, Found. Comput. Math., 2 (2002), 203-245. | MR | Zbl

[8] W. Dahmen-A. Kunoth-R. Schneider, Wavelet least squares methods for boundary value problems, SIAM J. Numer. Anal., 39 (2002), 1985-2013 (electronic). | MR | Zbl

[9] W. Dörfler, Uniform a priori estimates for singularly perturbed elliptic equations in multidimensions, SIAM J. Numer. Anal., 36 (1999), 1878-1900 (electronic). | MR | Zbl

[10] H. Goering-A. Felgenhauer-G. Lube-H.-G. Roos-L. Tobiska, Singularly perturbed differential equations, vol. 13 of Reihe Math. Research, Akademie-Verlag, Berlin, 1983. | MR | Zbl

[11] J.-L. Lions-E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Springer-Verlag, New York, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. | MR | Zbl

[12] G. Sangalli, Analysis of the advection-diffusion operator using fractional order norms, Tech. Rep. 1221, I.A.N.-C.N.R., 2001. Accepted on Numer. Math. | MR | Zbl

[13] G. Sangalli, Quasi-optimality of the SUPG method for the one-dimensional advection-diffusion problem, Tech. Rep. 1222, I.A.N.-C.N.R., 2001. Accepted on SIAM J. Numer. Anal. | MR | Zbl

[14] G. Sangalli, A uniform analysis of non-symmetric and coercive linear operators, Tech. Rep. 23-PV, I.M.A.T.I.-C.N.R., 2003. Submitted to SIAM J. Math. Anal. | Zbl

[15] H. Triebel, Interpolation theory, function spaces, differential operators, Johann Ambrosius Barth, Heidelberg, second ed., 1995. | MR | Zbl

[16] R. Verfürth, Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation, Numer. Math., 78 (1998), 479-493. | MR | Zbl