Bifurcation of free vibrations for completely resonant wave equations
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 519-528.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove existence of small amplitude, 2p/v-periodic in time solutions of completely resonant nonlinear wave equations with Dirichlet boundary conditions for any frequency $\omega$ belonging to a Cantor-like set of positive measure and for a generic set of nonlinearities. The proof relies on a suitable Lyapunov-Schmidt decomposition and a variant of the Nash-Moser Implicit Function Theorem.
Dimostriamo l'esistenza di soluzioni di piccola ampiezza, $2\pi/\omega$-periodiche nel tempo, per equazioni delle onde nonlineari completamente risonanti, per frequenze $\omega$ in un insieme di Cantor di misura positiva e per un insieme generico di nonlinearità. La dimostrazione si basa su una opportuna decomposizione di Lyapunov-Schmidt e su una variante dei teoremi di funzione implicita alla Nash-Moser.
@article{BUMI_2004_8_7B_2_a16,
     author = {Berti, Massimiliano and Bolle, Philippe},
     title = {Bifurcation of free vibrations for completely resonant wave equations},
     journal = {Bollettino della Unione matematica italiana},
     pages = {519--528},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {2},
     year = {2004},
     zbl = {1182.35166},
     mrnumber = {1819863},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a16/}
}
TY  - JOUR
AU  - Berti, Massimiliano
AU  - Bolle, Philippe
TI  - Bifurcation of free vibrations for completely resonant wave equations
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 519
EP  - 528
VL  - 7B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a16/
LA  - en
ID  - BUMI_2004_8_7B_2_a16
ER  - 
%0 Journal Article
%A Berti, Massimiliano
%A Bolle, Philippe
%T Bifurcation of free vibrations for completely resonant wave equations
%J Bollettino della Unione matematica italiana
%D 2004
%P 519-528
%V 7B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a16/
%G en
%F BUMI_2004_8_7B_2_a16
Berti, Massimiliano; Bolle, Philippe. Bifurcation of free vibrations for completely resonant wave equations. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 519-528. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a16/

[1] D. Bambusi-S. Paleari, Families of periodic solutions of resonant PDEs, J. Nonlinear Sci., 11 (2001), 69-87. | MR | Zbl

[2] M. Berti-P. Bolle, Periodic solutions of nonlinear wave equations with general nonlinearities, Comm. Math. Phys., 243 (2003), 315-328. | MR | Zbl

[3] M. Berti-P. Bolle, Multiplicity of periodic solutions of nonlinear wave equations, Nonlinear Analysis, 56 (2004), 1011-1046. | MR | Zbl

[4] M. Berti-P. Bolle, Cantor families of periodic solutions of completely resonant wave equations and the Nash-Moser theorem, preprint Sissa, 2004. | MR | Zbl

[5] J. Bourgain, Periodic solutions of nonlinear wave equations, Harmonic analysis and partial differential equations, 69-97, Chicago Lectures in Math., Univ. Chicago Press, 1999. | MR | Zbl

[6] W. Craig-C. E. Wayne, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498. | MR | Zbl

[7] G. Gentile-V. Mastropietro-M. Procesi, Periodic solutions for completely resonant nonlinear wave equations, preprint 2004. | fulltext mini-dml | Zbl

[8] B. V. Lidskij-E. I. Shulman, Periodic solutions of the equation $u_{tt}-u_{xx}+u^{3}=0$, Funct. Anal. Appl., 22 (1988), 332-333. | MR | Zbl