Computing the quantum cohomology of some Fano threefolds and its semisimplicity
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 511-517
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We compute explicit presentations for the small Quantum Cohomology ring of some Fano threefolds which are obtained as one- or two-curve blow-ups from $\mathbb{P}^{3}$ or the smooth quadric. Systematic usage of the associativity property of quantum product implies that only a very small and enumerative subset of Gromov- Witten invariants is needed. Then, for these threefolds the Dubrovin conjecture on the semisimplicity of Quantum Cohomology is proven by checking the computed Quantum Cohomology rings and by showing that a smooth Fano threefold $X$ with $b_{3}(X)=0$ admits a complete exceptional set of the appropriate length. Details are contained in the preprint [4] and will be published elsewhere.
@article{BUMI_2004_8_7B_2_a15,
author = {Ciolli, Gianni},
title = {Computing the quantum cohomology of some {Fano} threefolds and its semisimplicity},
journal = {Bollettino della Unione matematica italiana},
pages = {511--517},
year = {2004},
volume = {Ser. 8, 7B},
number = {2},
zbl = {1182.14058},
mrnumber = {MR2072951},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a15/}
}
TY - JOUR AU - Ciolli, Gianni TI - Computing the quantum cohomology of some Fano threefolds and its semisimplicity JO - Bollettino della Unione matematica italiana PY - 2004 SP - 511 EP - 517 VL - 7B IS - 2 UR - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a15/ LA - en ID - BUMI_2004_8_7B_2_a15 ER -
Ciolli, Gianni. Computing the quantum cohomology of some Fano threefolds and its semisimplicity. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 511-517. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a15/