Numerical characters of graded algebras
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 257-274.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This is the summary of the plenary talk I gave in Milan at the XVII Meeting of the Unione Matematica Italiana. We focus on some relevant numerical characters of the standard graded algebras and, in some case, we explain their geometric meaning.
Questo è il sunto della conferenza da me tenuta a Milano in occasione del XVII Congresso UMI. Si introducono alcuni importanti caratteri numerici delle algebre graduate, se ne studiano il comportamento e, in certi casi, la loro rilevanza geometrica.
@article{BUMI_2004_8_7B_2_a0,
     author = {Valla, Giuseppe},
     title = {Numerical characters of graded algebras},
     journal = {Bollettino della Unione matematica italiana},
     pages = {257--274},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {2},
     year = {2004},
     zbl = {1177.13035},
     mrnumber = {1150603},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a0/}
}
TY  - JOUR
AU  - Valla, Giuseppe
TI  - Numerical characters of graded algebras
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 257
EP  - 274
VL  - 7B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a0/
LA  - en
ID  - BUMI_2004_8_7B_2_a0
ER  - 
%0 Journal Article
%A Valla, Giuseppe
%T Numerical characters of graded algebras
%J Bollettino della Unione matematica italiana
%D 2004
%P 257-274
%V 7B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a0/
%G en
%F BUMI_2004_8_7B_2_a0
Valla, Giuseppe. Numerical characters of graded algebras. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 2, pp. 257-274. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_2_a0/

[1] J. Alexander-A. Hirschowitz, La méthod d'Horace éclaté: Application à l'interpolation en degré quatre, Inv. Math., 107 (1992), 585-602. | MR | Zbl

[2] D. Anick, Thin algebras of embedding dimension three, J. Algebra, 100 (1986), 235-259. | MR | Zbl

[3] D. Bayer-M. Stillman, A criterion for detecting $m$-regularity, Invent. Math., 87 (1987), 1-11. | MR | Zbl

[4] A. M. Bigatti, Upper bounds for the Betti numbers of a given Hilbert Function, Comm. Algebra, 21 (7) (1993), 2317-2334. | MR | Zbl

[5] M. Brignone-G. Valla, On the resolutions of certain level algebras, preprint (2003). | MR | Zbl

[6] W. Bruns-J. Herzog, Cohen-Macaulay rings, Cambridge studies in advanced mathematics, 39, 1993. | MR | Zbl

[7] B. Buchberger, An algorithmic criterion for the solvability of algebraic system of equations, Aequationes Math., 4 (1970), 374-383. | Zbl

[8] A. Capani-G. Niesi-L. Robbiano, A system for doing Computations in Commutative Algebra (1995). Available via anonymous ftp from cocoa.dima.unige.it

[9] M. P. Cavaliere-M. E. Rossi-G. Valla, The Green-Lazarsfeld conjecture for $n+4$ points in $\mathbb{P}^n$, Rend. Sem. Mat. Univ. Politec. Torino, 49 (1991), 175-195. | MR | Zbl

[10] H. Charalambous-E. G. Evans, Resolutions with a given Hilbert Function, Contemporary Math., 159 (1994), 19-26. | MR | Zbl

[11] E. De Negri-G. Valla, The $h$-vector of a Gorenstein codimension three domain, Nagoya Math. J., 138 (1995), 113-140. | fulltext mini-dml | MR | Zbl

[12] D. Eisenbud-S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra, 88 (1984), 89-133. | MR | Zbl

[13] D. Eisenbud-S. Popescu, The projective geometry of the Gale transform, J. Algebra, 230 (2000), 127-173. | MR | Zbl

[14] R. Fröberg, An inequality for Hilbert series of graded algebras, Math. Scand., 56 (1985), 117-144. | MR | Zbl

[15] M. Green, Koszul cohomology and the Geometry of projective varieties, J. Diff. Geom. (1984), 125-171. | fulltext mini-dml | MR | Zbl

[16] M. Green, Generic Initial ideals, Six Lectures on Commutative Algebra (Bellaterra), Progr. Math. 166, Birkhäuser Basel (1998), 119-186. | MR | Zbl

[17] L. Gruson-C. Peskine, Genre des courbes de l'espace projectif, Algebraic Geometry, Lect. Notes Math., 687 (1978), Springer. | MR | Zbl

[18] L. Gruson-R. Lazarsfeld-C. Peskine, On a theorem of Castelnuovo and the equations defining space curves, Inv. Math., 72 (1983), 491-506. | MR | Zbl

[19] H. A. Hulett, Maximum Betti numbers of homogeneous ideal with a given Hilbert Function, Comm. Algebra, 21 (7) (1993), 2335-2350. | MR | Zbl

[20] S. Kleiman, Les théoremes de finitude pour le foncteur de Picard, Exposè XIII. In Théorie des Intersections et Théorem de Riemann-Roch (SGA VI), Springer Lect. Notes in Math., 225 (1971), 616-666. | MR | Zbl

[21] A. M. Lorenzini, The minimal resolution conjecture, J. Algebra, 156 (1993), 5-35. | MR | Zbl

[22] R. Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces, Duke Math. J., 55 (1987), 423-429. | fulltext mini-dml | MR | Zbl

[23] F. S. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc., 26 (1927), 531-555. | Jbk 53.0104.01

[24] D. Mcduff-L. Polterovich, Symplectic packings and Algebraic Geometry, Inv. Math., 115 (1994), 405-429. | MR | Zbl

[25] M. E. Rossi-N. V. Trung-G. Valla, Castelnuovo-Mumford regularity and extended degree, Trans. Amer. Math. Soc., 355, no. 5 (2003), 1773-1786. | MR | Zbl

[26] V. Srinivas-V. Trivedi, On the Hilbert Function of a Cohen-Macaulay ring, J. Algebraic Geom., 6 (1997), 733-751. | MR | Zbl

[27] R. Stanley, Hilbert Functions of graded algebras, Adv. in Math., 28 (1978), 57-83. | MR | Zbl

[28] R. Stanley, The Upper Bound conjecture and Cohen-Macaulay rings, Studies in Appl. Math., 54 (1975), 135-142. | MR | Zbl