Algebraic cycles on abelian varieties and their decomposition
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 231-240
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
For an Abelian Variety $X$, the Künneth decomposition of the rational equivalence class of the diagonal $\Delta\subset X\times X$ gives rise to explicit formulas for the projectors associated to Beauville's decomposition (1) of the Chow ring $CH^{\bullet}(X)$, in terms of push-forward and pull-back of $m$-multiplication. We obtain a few simplifications of such formulas, see theorem (4) below, and some related results, see proposition (9) below.
@article{BUMI_2004_8_7B_1_a9,
author = {Marini, Giambattista},
title = {Algebraic cycles on abelian varieties and their decomposition},
journal = {Bollettino della Unione matematica italiana},
pages = {231--240},
publisher = {mathdoc},
volume = {Ser. 8, 7B},
number = {1},
year = {2004},
zbl = {1112.14007},
mrnumber = {MR2044268},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a9/}
}
TY - JOUR AU - Marini, Giambattista TI - Algebraic cycles on abelian varieties and their decomposition JO - Bollettino della Unione matematica italiana PY - 2004 SP - 231 EP - 240 VL - 7B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a9/ LA - en ID - BUMI_2004_8_7B_1_a9 ER -
Marini, Giambattista. Algebraic cycles on abelian varieties and their decomposition. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 231-240. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a9/