Algebraic cycles on abelian varieties and their decomposition
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 231-240

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

For an Abelian Variety $X$, the Künneth decomposition of the rational equivalence class of the diagonal $\Delta\subset X\times X$ gives rise to explicit formulas for the projectors associated to Beauville's decomposition (1) of the Chow ring $CH^{\bullet}(X)$, in terms of push-forward and pull-back of $m$-multiplication. We obtain a few simplifications of such formulas, see theorem (4) below, and some related results, see proposition (9) below.
@article{BUMI_2004_8_7B_1_a9,
     author = {Marini, Giambattista},
     title = {Algebraic cycles on abelian varieties and their decomposition},
     journal = {Bollettino della Unione matematica italiana},
     pages = {231--240},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {1},
     year = {2004},
     zbl = {1112.14007},
     mrnumber = {MR2044268},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a9/}
}
TY  - JOUR
AU  - Marini, Giambattista
TI  - Algebraic cycles on abelian varieties and their decomposition
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 231
EP  - 240
VL  - 7B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a9/
LA  - en
ID  - BUMI_2004_8_7B_1_a9
ER  - 
%0 Journal Article
%A Marini, Giambattista
%T Algebraic cycles on abelian varieties and their decomposition
%J Bollettino della Unione matematica italiana
%D 2004
%P 231-240
%V 7B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a9/
%G en
%F BUMI_2004_8_7B_1_a9
Marini, Giambattista. Algebraic cycles on abelian varieties and their decomposition. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 231-240. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a9/