Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 159-188

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.
@article{BUMI_2004_8_7B_1_a6,
     author = {Fleckinger, J. and Hern\'andez, J. and Th\'elin, F.},
     title = {Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems},
     journal = {Bollettino della Unione matematica italiana},
     pages = {159--188},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {1},
     year = {2004},
     zbl = {1117.35054},
     mrnumber = {MR2044265},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a6/}
}
TY  - JOUR
AU  - Fleckinger, J.
AU  - Hernández, J.
AU  - Thélin, F.
TI  - Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 159
EP  - 188
VL  - 7B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a6/
LA  - en
ID  - BUMI_2004_8_7B_1_a6
ER  - 
%0 Journal Article
%A Fleckinger, J.
%A Hernández, J.
%A Thélin, F.
%T Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems
%J Bollettino della Unione matematica italiana
%D 2004
%P 159-188
%V 7B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a6/
%G en
%F BUMI_2004_8_7B_1_a6
Fleckinger, J.; Hernández, J.; Thélin, F. Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 159-188. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a6/