Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 159-188
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.
@article{BUMI_2004_8_7B_1_a6,
author = {Fleckinger, J. and Hern\'andez, J. and Th\'elin, F.},
title = {Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems},
journal = {Bollettino della Unione matematica italiana},
pages = {159--188},
publisher = {mathdoc},
volume = {Ser. 8, 7B},
number = {1},
year = {2004},
zbl = {1117.35054},
mrnumber = {MR2044265},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a6/}
}
TY - JOUR AU - Fleckinger, J. AU - Hernández, J. AU - Thélin, F. TI - Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems JO - Bollettino della Unione matematica italiana PY - 2004 SP - 159 EP - 188 VL - 7B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a6/ LA - en ID - BUMI_2004_8_7B_1_a6 ER -
%0 Journal Article %A Fleckinger, J. %A Hernández, J. %A Thélin, F. %T Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems %J Bollettino della Unione matematica italiana %D 2004 %P 159-188 %V 7B %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a6/ %G en %F BUMI_2004_8_7B_1_a6
Fleckinger, J.; Hernández, J.; Thélin, F. Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 159-188. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a6/