A structure theory for Jordan $H^*$-pairs
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 61-77.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Jordan $H^{*}$-pairs appear, in a natural way, in the study of Lie $H^{*}$-triple systems ([3]). Indeed, it is shown in [4, Th. 3.1] that the problem of the classification of Lie $H^{*}$-triple systems is reduced to prove the existence of certain $L^{*}$-algebra envelopes, and it is also shown in [3] that we can associate topologically simple nonquadratic Jordan $H^{*}$-pairs to a wide class of Lie $H^{*}$-triple systems and then the above envelopes can be obtained from a suitable classification, in terms of associative $H^{*}$-pairs, of these pairs. In this paper we give a classification theorem for topologically simple non-quadratic Jordan $H^{*}$-pairs in terms of associative $H^{*}$-pairs and certain of their anti-isomorphisms. Some consequences of this classification are also stated.
Il concetto di $H^{*}$-coppia di Jordan, appare, in modo naturale, nello studio degli $H^{*}$-sistemi tripli di Lie ([3]). Di fatto, nel [4, Th. 3.1] si prova che il problema della classificazione degli $H^{*}$-sistemi tripli di Lie si riduce a provare l'esistenza di certi inviluppi di $L^{*}$-algebre e in [3] si prova anche che è possibile associare $H^{*}$- coppie topologicamente semplici non quadratiche di Jordan ad un'ampia classe di $H^{*}$-sistemi tripli di Lie e che poi gli inviluppi precedenti possono essere ottenuti da un'opportuna classificazione, in termini di $H^{*}$-coppie associative, di queste coppie. In questo lavoro viene dato un teorema di classificazione delle $H^{*}$-coppie topologicamente semplici non quadratiche di Jordan in termini di $H^{*}$-coppie associative e di certuni loro anti-isomorfismi. Vengono anche enunciate alcune conseguenze di questa classificazione.
@article{BUMI_2004_8_7B_1_a2,
     author = {Calder\'on Mart{\'\i}n, A. J. and Gonz\'alez, C. Mart{\'\i}n},
     title = {A structure theory for {Jordan} $H^*$-pairs},
     journal = {Bollettino della Unione matematica italiana},
     pages = {61--77},
     publisher = {mathdoc},
     volume = {Ser. 8, 7B},
     number = {1},
     year = {2004},
     zbl = {1118.46059},
     mrnumber = {1409234},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a2/}
}
TY  - JOUR
AU  - Calderón Martín, A. J.
AU  - González, C. Martín
TI  - A structure theory for Jordan $H^*$-pairs
JO  - Bollettino della Unione matematica italiana
PY  - 2004
SP  - 61
EP  - 77
VL  - 7B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a2/
LA  - en
ID  - BUMI_2004_8_7B_1_a2
ER  - 
%0 Journal Article
%A Calderón Martín, A. J.
%A González, C. Martín
%T A structure theory for Jordan $H^*$-pairs
%J Bollettino della Unione matematica italiana
%D 2004
%P 61-77
%V 7B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a2/
%G en
%F BUMI_2004_8_7B_1_a2
Calderón Martín, A. J.; González, C. Martín. A structure theory for Jordan $H^*$-pairs. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 61-77. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a2/

[1] J. A. Anquela-T. Cortés, Primitive Jordan Pairs and Triple Systems, J. Algebra, 184, no. 2 (1996), 632-678. | MR | Zbl

[2] A. J. Calderón-C. Martín, Dual pairs techniques in $H^*$-theories, J. Pure Appl. Algebra, 133 (1998), 59-63. | MR | Zbl

[3] A. J. Calderón-C. Martín, On $L^*$-triples and Jordan $H^*$-pairs, Ring theory and Algebraic Geometry, (Granja, Hermida, Verschoren eds.) Marcel Dekker, Inc. Chapter 4 (2001), 87-94. | MR

[4] A. J. Calderón-C. Martín, Hilbert space methods in the theory of Lie triple systems, Recent Progress in Functional Analysis, K. D. Bierstedt, J. Bonet, M. Maestre, J. Schmets (ed.) in the series North-Holland Math. Studies (2001), 309-319. | MR

[5] A. J. Calderón-C. Martín, On Associative and Jordan $H^*$-pairs, Int. J. Math. Game Theory Algebra, 11, no. 4 (2001), 1-12. | MR | Zbl

[6] A. Castellón-J. A. Cuenca, Isomorphisms of $H^*$-triple systems, Ann. della Scuola Norm. Sup. Pisa Cl. Sci. 4, no. 4 (1992), 507-514. | fulltext mini-dml | MR | Zbl

[7] A. Castellón-J. A. Cuenca, Associative $H^*$-triple systems, In Nonassociative Algebraic Models. Nova Science Publishers, S. González and H.C. Myung Eds. (1992), 45-67. | MR | Zbl

[8] A. Castellón-J. A. Cuenca, The Centroid and Metacentroid of an $H^*$-triple system., Bull. Soc. Math. Belg, 45, Fac. 1 et 2 (1993), 85-93. | MR

[9] A. Castellón-J. A. Cuenca, Jordan $H^*$-triple systems, in Nonassociative Algebras and its Applications, S. González editor, Kluwer Academic Publishers (1994), 66-72. | MR

[10] A. Castellón-J. A. Cuenca-C. Martín, Ternary $H^*$-algebras, Boll. Un. Mat. Ital. B (7), 6, no. 1 (1992), 217-228. | MR

[11] A. Castellón-J. A. Cuenca-C. Martín, Special Jordan $H^*$-triple systems, Comm. Alg, 28, no. 10 (2000), 4699-4706. | MR

[12] J. A. Cuenca-A. García-C. Martín. Jacobson density for associative pairs and its applications, Comm. Alg., 17, no. 10 (1989), 2595-2610. | MR | Zbl

[13] A. D'Amour, Jordan triple homomorphisms of associative structures, Comm. Algebra, 19, no. 4 (1991), 1229-1247. | MR | Zbl

[14] A. D'Amour, Zel'manov polynomials in quadratic Jordan triple systems, J. Algebra, 140, no. 1 (1991), 160-183. | MR | Zbl

[15] A. Fernández-E. García-E. Sánchez, Prime Nondegenerate Jordan Triple Systems with Minimal Inner Ideals, Nonassociative algebraic models Nova Sci. Publ., Commack, NY. (1992), 143-166. | MR | Zbl

[16] N. Jacobson, Structure of Rings, American Mathematical Society Colloquium Publications vol. 37, 2nd ed. Providence R.I. | MR | Zbl

[17] W. Kaup, Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension, I, Math. Ann., 257 (1981), 363-486. | MR | Zbl

[18] W. Kaup, Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension, II, Math. Ann., 262 (1983), 57-75. | MR | Zbl

[19] O. Loos, On the socle of a Jordan pair, Collect. Math, 40, no. 2 (1989), 109-125. | MR | Zbl

[20] O. Loos, Jordan pairs, Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, vol. 460, 1975. | MR | Zbl

[21] K. Mccrimmon-E. Zel'Manov, The Stucture of Strongly Prime Quadratic Jordan Algebras, Adv. in Math, 69, no. 2 (1988), 133-222. | Zbl

[22] E. Neher, Cartan-Involutionen von halbeinfachen rellen Jordan Triplesystemen, Math. Z, 169, no. 2 (1979), 271-292. | MR | Zbl

[23] E. Neher, On the classification of Lie and Jordan triple systems, Comm. Algebra, 13, no. 12 (1985), 2615-2667. | MR | Zbl

[24] A. Rodriguez, Jordan axioms for $C^*$-algebras, Manuscripta Math., 61 (1988), 297-314. | MR | Zbl