A structure theory for Jordan $H^*$-pairs
Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 61-77
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
Jordan $H^{*}$-pairs appear, in a natural way, in the study of Lie $H^{*}$-triple systems ([3]). Indeed, it is shown in [4, Th. 3.1] that the problem of the classification of Lie $H^{*}$-triple systems is reduced to prove the existence of certain $L^{*}$-algebra envelopes, and it is also shown in [3] that we can associate topologically simple nonquadratic Jordan $H^{*}$-pairs to a wide class of Lie $H^{*}$-triple systems and then the above envelopes can be obtained from a suitable classification, in terms of associative $H^{*}$-pairs, of these pairs. In this paper we give a classification theorem for topologically simple non-quadratic Jordan $H^{*}$-pairs in terms of associative $H^{*}$-pairs and certain of their anti-isomorphisms. Some consequences of this classification are also stated.
@article{BUMI_2004_8_7B_1_a2,
author = {Calder\'on Mart{\'\i}n, A. J. and Gonz\'alez, C. Mart{\'\i}n},
title = {A structure theory for {Jordan} $H^*$-pairs},
journal = {Bollettino della Unione matematica italiana},
pages = {61--77},
year = {2004},
volume = {Ser. 8, 7B},
number = {1},
zbl = {1118.46059},
mrnumber = {MR2044261},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a2/}
}
Calderón Martín, A. J.; González, C. Martín. A structure theory for Jordan $H^*$-pairs. Bollettino della Unione matematica italiana, Série 8, 7B (2004) no. 1, pp. 61-77. http://geodesic.mathdoc.fr/item/BUMI_2004_8_7B_1_a2/