Regular permutation sets and loops
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 617-628.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Two suitable composition laws are defined in a regular permutation set in order to find new characterizations of some important classes of loops.
Utilizzando insiemi regolari di permutazioni e due operazioni opportunamente definite, si ottengono nuove caratterizzazioni di importanti classi di cappi.
@article{BUMI_2003_8_6B_3_a8,
     author = {Capodaglio, Rita},
     title = {Regular permutation sets and loops},
     journal = {Bollettino della Unione matematica italiana},
     pages = {617--628},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {3},
     year = {2003},
     zbl = {1119.20057},
     mrnumber = {93552},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a8/}
}
TY  - JOUR
AU  - Capodaglio, Rita
TI  - Regular permutation sets and loops
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 617
EP  - 628
VL  - 6B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a8/
LA  - en
ID  - BUMI_2003_8_6B_3_a8
ER  - 
%0 Journal Article
%A Capodaglio, Rita
%T Regular permutation sets and loops
%J Bollettino della Unione matematica italiana
%D 2003
%P 617-628
%V 6B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a8/
%G en
%F BUMI_2003_8_6B_3_a8
Capodaglio, Rita. Regular permutation sets and loops. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 617-628. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a8/

[1] R. H. Bruck, A survey of binary systems, Springer Verlag (1971). | MR | Zbl

[2] R. H. Bruck-L. J. Paige, Loops whose inner mappings are automorphisms, Ann. of Math., 63 (1956), 308-323. | MR | Zbl

[3] R. P. Burn, Finite Bol loops, Math. Proc. Camb. Phil. Soc., 84 (1978), 337-389. | MR | Zbl

[4] R. Capodaglio, Cappi e Permutazioni, Note di Matem., III (1983), 229-243. | MR

[5] R. Capodaglio, TWO LOOPS IN THE ABSOLUTE PLANE. TO APPEAR | MR | Zbl

[6] R. Capodaglio-L. Verardi, On a Permutation Representation for Finite Loops, Ist. Lomb. (Rend.) A, 124 (1990), 15-22. | MR | Zbl

[7] S. Doro, Simple Moufang loops, Math. Proc. Camb. Phil. Soc., 83 (1978), 377-392. | MR | Zbl

[8] H. Karzel, Recent developments on absolute geometries and algebraization by Kloops, Discr. Math., 208/209 (1999), 387-409 | MR | Zbl

[9] H. Karzel, - H. Wefelsheid, A Geometric Construction of the $K$-Loop of a Hyperbolic Space, Geom. Dedicata, 58 (1995), 227-236 | MR | Zbl

[10] H. Karzel-H. Wefelsheid, Groups with an involutory antiautomorphism and $K$-loops, application to space-time-world and hyperbolic geometry I, Results Math., 23 (1993), 338-354. | MR | Zbl

[11] H. Kiechle, $K$-loops from classical groups over ordered fields, J. Geom., 61 (1998), 105-127. | MR | Zbl

[12] H. Kiechle, Theory of $K$-Loops, Springer 2002. | MR | Zbl

[13] M. Kikkawa, Geometry of homogeneous Lie loops, Hiroshima Math. J, 5 (1975), 141-179. | fulltext mini-dml | MR | Zbl

[14] A. Kreuzer, Inner mappings of Bruck loops, Math. Proc. Camb. Phil. Soc., 123 (1998), 53-58. | MR | Zbl

[15] A. Kreuzer-H. Wefelscheid, On $K$-loops of finite order, Results Math., 25 (1994), 79-102. | MR | Zbl

[16] P. T. Nagy-K. Strambach, Loops in Group Theory and Lie Theory, de Gruyter, Berlin, New York 2002. | MR | Zbl

[17] H. O. Pflugfelder, Quasigroups and Loops: Introduction, Heldermann, Berlin 1990. | MR | Zbl

[18] D. A. Robinson, Bol Loops, Trans. Amer. Math. Soc., 123 (1966), 341-354. | MR | Zbl

[19] A. A. Ungar, The relativistic noncommutative nonassociative group of velocities and the Thomas rotation, Results Math., 16 (1989), 168-179. | MR | Zbl

[20] A. A. Ungar, Weakly associative groups, Results Math., 17 (1990), 149-168. | MR | Zbl

[21] G. Zappa-R. Permutti, Gruppi corpi equazioni, Feltrinelli (1963). | MR | Zbl