Pronormal and subnormal subgroups and permutability
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 605-615.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We describe the finite groups satisfying one of the following conditions: all maximal subgroups permute with all subnormal subgroups, (2) all maximal subgroups and all Sylow $p$-subgroups for $p 7$ permute with all subnormal subgroups.
Trattiamo gruppi finiti che soddisfano una delle condizioni seguenti: (1) I sottogruppi massimali permutano con i sottogruppi subnormali, (2) I sottogruppi massimali ed i $p$-sottogruppi di Sylow $(p 7)$ permutano con i sottogruppi subnormali.
@article{BUMI_2003_8_6B_3_a7,
     author = {Beidleman, James and Heineken, Hermann},
     title = {Pronormal and subnormal subgroups and permutability},
     journal = {Bollettino della Unione matematica italiana},
     pages = {605--615},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {3},
     year = {2003},
     zbl = {1147.20301},
     mrnumber = {364444},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a7/}
}
TY  - JOUR
AU  - Beidleman, James
AU  - Heineken, Hermann
TI  - Pronormal and subnormal subgroups and permutability
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 605
EP  - 615
VL  - 6B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a7/
LA  - en
ID  - BUMI_2003_8_6B_3_a7
ER  - 
%0 Journal Article
%A Beidleman, James
%A Heineken, Hermann
%T Pronormal and subnormal subgroups and permutability
%J Bollettino della Unione matematica italiana
%D 2003
%P 605-615
%V 6B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a7/
%G en
%F BUMI_2003_8_6B_3_a7
Beidleman, James; Heineken, Hermann. Pronormal and subnormal subgroups and permutability. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 605-615. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a7/

[1] R. K. Agrawal, Finite groups whose subnormal subgroups permute with all Sylow subgroups, Proc. Amer. Math. Soc., 47 (1975), 77-83. | MR | Zbl

[2] M. Alejandre-A. Ballester-Bolinches-M. C. Pedraza-Aguilera, Finite Soluble Groups with Permutable Subnormal Subgroups, J. Algebra, 240 (2001), 705-722. | MR | Zbl

[3] R. Baer Überauflösbare Gruppen, Abh. Math. Sem. Univ. Hamburg, 23(1959), 11-28. | MR | Zbl

[4] J. C. Beidleman-B. Brewster-D. J. S. Robinson, Criteria for permutability to be transitive in finite groups, J. Algebra, 222 (1999), 400-412. | MR | Zbl

[5] J. C. Beidleman-H. Heineken, Finite Soluble Groups Whose Subnormal Subgroups Permute With Certain Classes of Subgroups, J. Group Theory (to appear). | Zbl

[6] J. H. Conway-R. T. Curtiss-S. P. Norton-R. A. Parker-R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985. | MR | Zbl

[7] R. A. Bryce-J. Cossey, The Wielandt subgroup of a finite soluble group, J. London Math. Soc., 40 (1989), 244-256. | MR | Zbl

[8] W. Gaschütz, Gruppen, in denen das Normalteilersein transitivist, J. reine angew Math., 198 (1957), 87-92. | MR | Zbl

[9] D. Gorenstein, Finite Simple Groups, Plenum Press, New York and London, 1982. | MR | Zbl

[10] B. Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z., 60 (1954), 409-434. | MR | Zbl

[11] O. H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), 205-221. | MR | Zbl

[12] R. Maier, Zur Vertauschbarkeit und Subnormalität von Untergruppen, Arch. Math., 53 (1989), 110-120. | MR | Zbl

[13] T. A. Peng, Finite groups with pronormal subgroups, Proc. Amer. Math. Soc., 20 (1969), 232-234. | MR | Zbl

[14] D. J. S. Robinson, A note on finite groups in which normality is transitive, Proc. Amer. Math. Soc., 19 (1968), 933-937. | MR | Zbl

[15] D. J. S. Robinson, A survey of groups in which normality or permutability is transitive, (Indian National Science Academy, New Delhi 1999), 171-181. | MR | Zbl

[16] D. J. S. Robinson, The Structure of Finite Groups in which Permutability is a Transitive Relation, J. Austral. Math. Soc., 70 (2001), 143-159. | MR | Zbl

[17] G. Zacher, I gruppi risolubili finiti in cui i sottogruppi di composizione coincidano con i sottogruppi quasi-normali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 37 (1964), 150-154. | MR | Zbl