Cubic differential forms and the group law on the Jacobian of a real algebraic curve
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 597-604

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In an earlier paper [6], we gave an explicit geometric description of the group law on the neutral component of the set of real points of the Jacobian of a smooth quartic curve. Here, we generalize this description to curves of higher genus. We get a description of the group law on the neutral component of the set of real points of the Jacobian of a smooth curve in terms of cubic differential forms. When applied to canonical curves, one gets an explicit geometric description of this group law by intersecting the curve with cubic hypersurfaces.
@article{BUMI_2003_8_6B_3_a6,
     author = {Huisman, J.},
     title = {Cubic differential forms and the group law on the {Jacobian} of a real algebraic curve},
     journal = {Bollettino della Unione matematica italiana},
     pages = {597--604},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {3},
     year = {2003},
     zbl = {1112.14035},
     mrnumber = {MR2014821},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a6/}
}
TY  - JOUR
AU  - Huisman, J.
TI  - Cubic differential forms and the group law on the Jacobian of a real algebraic curve
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 597
EP  - 604
VL  - 6B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a6/
LA  - en
ID  - BUMI_2003_8_6B_3_a6
ER  - 
%0 Journal Article
%A Huisman, J.
%T Cubic differential forms and the group law on the Jacobian of a real algebraic curve
%J Bollettino della Unione matematica italiana
%D 2003
%P 597-604
%V 6B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a6/
%G en
%F BUMI_2003_8_6B_3_a6
Huisman, J. Cubic differential forms and the group law on the Jacobian of a real algebraic curve. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 597-604. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a6/