Cubic differential forms and the group law on the Jacobian of a real algebraic curve
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 597-604
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
In an earlier paper [6], we gave an explicit geometric description of the group law on the neutral component of the set of real points of the Jacobian of a smooth quartic curve. Here, we generalize this description to curves of higher genus. We get a description of the group law on the neutral component of the set of real points of the Jacobian of a smooth curve in terms of cubic differential forms. When applied to canonical curves, one gets an explicit geometric description of this group law by intersecting the curve with cubic hypersurfaces.
@article{BUMI_2003_8_6B_3_a6,
author = {Huisman, J.},
title = {Cubic differential forms and the group law on the {Jacobian} of a real algebraic curve},
journal = {Bollettino della Unione matematica italiana},
pages = {597--604},
publisher = {mathdoc},
volume = {Ser. 8, 6B},
number = {3},
year = {2003},
zbl = {1112.14035},
mrnumber = {MR2014821},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a6/}
}
TY - JOUR AU - Huisman, J. TI - Cubic differential forms and the group law on the Jacobian of a real algebraic curve JO - Bollettino della Unione matematica italiana PY - 2003 SP - 597 EP - 604 VL - 6B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a6/ LA - en ID - BUMI_2003_8_6B_3_a6 ER -
Huisman, J. Cubic differential forms and the group law on the Jacobian of a real algebraic curve. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 597-604. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a6/