Normal generation of line bundles on a general $k$-gonal algebraic curve
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 557-562.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove that a very ample special line bundle $L$ of degree $d>(3g-1)/2$ on a general $k$-gonal curve is normally generated if the degree of the base locus of its dual bundle $KL^{-1}$ does not exceed $c(k-2)/2$, where $c:= d-(3g-1)/2$.
Sia $X$ una curva $k$-gonale generale di genere $g$ ed $L \in \text{Pic}^{d}(X)$ con $d:= \text{deg} L > (3g-1)/2$, $h^{1}(X, L)\neq 0$ ed $L$ molto ampio. In questo lavoro dimostriamo che $L$ è normalmente generato se il luogo base di $KL^{-1}$ ha grado al massimo $c(k-2)/2$ con $c:= d-(3g-1)/2$.
@article{BUMI_2003_8_6B_3_a3,
     author = {Ballico, Edoardo and Keem, Changho and Kim, Seonja},
     title = {Normal generation of line bundles on a general $k$-gonal algebraic curve},
     journal = {Bollettino della Unione matematica italiana},
     pages = {557--562},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {3},
     year = {2003},
     zbl = {1178.14030},
     mrnumber = {770932},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a3/}
}
TY  - JOUR
AU  - Ballico, Edoardo
AU  - Keem, Changho
AU  - Kim, Seonja
TI  - Normal generation of line bundles on a general $k$-gonal algebraic curve
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 557
EP  - 562
VL  - 6B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a3/
LA  - en
ID  - BUMI_2003_8_6B_3_a3
ER  - 
%0 Journal Article
%A Ballico, Edoardo
%A Keem, Changho
%A Kim, Seonja
%T Normal generation of line bundles on a general $k$-gonal algebraic curve
%J Bollettino della Unione matematica italiana
%D 2003
%P 557-562
%V 6B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a3/
%G en
%F BUMI_2003_8_6B_3_a3
Ballico, Edoardo; Keem, Changho; Kim, Seonja. Normal generation of line bundles on a general $k$-gonal algebraic curve. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 557-562. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a3/

[ACGH] E. Arbarello-M. Cornalba-P. A. Griffiths-J. Harris, Geometry of Algebraic Curves I, Springer Verlag, 1985. | MR | Zbl

[B] E. Ballico, On Projectively Normal Embeddings of General $k$-gonal Curves, Ann. Univ. Ferrara, Sez. VII, Sc. Mat., XLV (1999), 123-125. | MR | Zbl

[CKM] M. Coppens-C. Keem-G. Martens, Primitive linear series on curves, Manuscripta Math., 77 (1992), 237-264. | MR | Zbl

[GL] M. Green-R. Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math., 83 (1986), 73-90. | MR | Zbl

[K] S. Kim, On the Clifford sequence of a general $k$-gonal curve, Indag. Math., N.S.8 (1997), 209-216. | MR | Zbl

[LM] H. Lange-G. Martens, Normal generation and presentation of line bundles of low degree on curves, J. reine angew. Math., 356 (1985), 1-18. | MR | Zbl

[Mu] D. Mumford, Varieties defined by quadric equations, Corso C.I.M.E. 1969, in Questions on Algebraic Varieties, Cremonese, Rome, 83 (1970), 30-100. | MR | Zbl