Topological manifolds and real algebraic geometry
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 545-555
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We study the problem of approximating, up to homotopy, compact topological manifolds by real algebraic varieties. As a consequence, we realize any integral non-degenerate quadratic form as the intersection form of a real algebraic variety. This is related to a well-known result, due to Freedman [F], on the topology of closed simply-connected topological $4$-manifolds.
@article{BUMI_2003_8_6B_3_a2,
author = {Tognoli, Alberto},
title = {Topological manifolds and real algebraic geometry},
journal = {Bollettino della Unione matematica italiana},
pages = {545--555},
year = {2003},
volume = {Ser. 8, 6B},
number = {3},
zbl = {1178.57019},
mrnumber = {MR2014817},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a2/}
}
Tognoli, Alberto. Topological manifolds and real algebraic geometry. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 545-555. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a2/