Topological manifolds and real algebraic geometry
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 545-555.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study the problem of approximating, up to homotopy, compact topological manifolds by real algebraic varieties. As a consequence, we realize any integral non-degenerate quadratic form as the intersection form of a real algebraic variety. This is related to a well-known result, due to Freedman [F], on the topology of closed simply-connected topological $4$-manifolds.
Si studia il problema di approssimazione, a meno di omotopia, delle varietà topologiche compatte di dimensione $4$ con varietà algebriche. Come conseguenza si prova che ogni forma quadratica intera non degenere è la forma di intersezione di una varietà algebrica reale di dimensione $4$. Questi risultati sono legati ai ben noti lavori di Freedman sulla topologia delle varietà compatte, semplicemente connesse di dimensione 4.
@article{BUMI_2003_8_6B_3_a2,
     author = {Tognoli, Alberto},
     title = {Topological manifolds and real algebraic geometry},
     journal = {Bollettino della Unione matematica italiana},
     pages = {545--555},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {3},
     year = {2003},
     zbl = {1178.57019},
     mrnumber = {621011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a2/}
}
TY  - JOUR
AU  - Tognoli, Alberto
TI  - Topological manifolds and real algebraic geometry
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 545
EP  - 555
VL  - 6B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a2/
LA  - en
ID  - BUMI_2003_8_6B_3_a2
ER  - 
%0 Journal Article
%A Tognoli, Alberto
%T Topological manifolds and real algebraic geometry
%J Bollettino della Unione matematica italiana
%D 2003
%P 545-555
%V 6B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a2/
%G en
%F BUMI_2003_8_6B_3_a2
Tognoli, Alberto. Topological manifolds and real algebraic geometry. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 545-555. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a2/

[AK] S. Akbulut-H. King, The topology of real algebraic sets with isolated singularities, Ann. of Math., 113 (1981), 425-446. | MR | Zbl

[BR] R. Benedetti-J. J. Risler, Real algebraic and semialgebraic sets, Hermann, Paris (1990). | MR | Zbl

[B] L. Beretta, Extension of maps and ordering, Ann. Univ. Ferrara, 44 (1998), 9-25. | MR | Zbl

[C] A. Cavicchioli, Sulla classificazione topologica delle varietà, Boll. Un. Mat. Ital. (7), 9-B (1995), 633-682. | Zbl

[CHS] A. Cavicchioli-F. Hegenbarth-F. Spaggiari, A splitting theorem for homotopy equivalent smooth $4$-manifolds, Rendiconti di Matematica Ser. VII, 17 (1997), 523-539. | MR | Zbl

[CFHS] C. L. Curtis-M. H. Freedman-W. C. Hsiang-R. Stong, A decomposition theorem for $h$-cobordant smooth simply-connected compact $4$-manifolds, Invent. Math., 123 (1996), 343-348. | MR | Zbl

[D1] S. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom., 18 (1983), 269-315. | fulltext mini-dml | MR | Zbl

[D2] S. Donaldson, Connections, cohomology and the intersection forms of $4$-manifolds, J. Differential Geom., 24 (1986), 275-341. | fulltext mini-dml | MR | Zbl

[D3] S. Donaldson, The orientation of Yang-Mills moduli spaces and four-dimensional topology, J. Differential Geom., 26 (1987), 397-428. | fulltext mini-dml | MR | Zbl

[D4] S. Donaldson, Irrationality and the $h$-cobordism conjecture, J. Differential Geom., 26 (1987), 141-168. | fulltext mini-dml | MR | Zbl

[F] M. H. Freedman, The topology of four-dimensional manifolds, J. Differential Geom., 17 (1982), 357-453. | fulltext mini-dml | MR | Zbl