Topological manifolds and real algebraic geometry
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 545-555
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We study the problem of approximating, up to homotopy, compact topological manifolds by real algebraic varieties. As a consequence, we realize any integral non-degenerate quadratic form as the intersection form of a real algebraic variety. This is related to a well-known result, due to Freedman [F], on the topology of closed simply-connected topological $4$-manifolds.
@article{BUMI_2003_8_6B_3_a2,
author = {Tognoli, Alberto},
title = {Topological manifolds and real algebraic geometry},
journal = {Bollettino della Unione matematica italiana},
pages = {545--555},
publisher = {mathdoc},
volume = {Ser. 8, 6B},
number = {3},
year = {2003},
zbl = {1178.57019},
mrnumber = {MR2014817},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a2/}
}
Tognoli, Alberto. Topological manifolds and real algebraic geometry. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 545-555. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a2/