Some lattice properties of normal-by-finite subgroups
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 763-771
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
A subgroup $H$ of a group $G$ is said to be normal-by-finite if the core $H_{G}$ of $H$ in $G$ has finite index in $H$. It has been proved by Buckley, Lennox, Neumann, Smith and Wiegold that if every subgroup of a group G is normal-by-finite, then $G$ is abelian-by-finite, provided that all its periodic homomorphic images are locally finite. The aim of this article is to describe the structure of groups G for which the partially ordered set $\text{nf}(G)$ consisting of all normal-by-finite subgroups satisfies certain relevant properties.
@article{BUMI_2003_8_6B_3_a17,
author = {De Falco, Maria and Musella, Carmela},
title = {Some lattice properties of normal-by-finite subgroups},
journal = {Bollettino della Unione matematica italiana},
pages = {763--771},
year = {2003},
volume = {Ser. 8, 6B},
number = {3},
zbl = {1119.20031},
mrnumber = {MR2014832},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a17/}
}
TY - JOUR AU - De Falco, Maria AU - Musella, Carmela TI - Some lattice properties of normal-by-finite subgroups JO - Bollettino della Unione matematica italiana PY - 2003 SP - 763 EP - 771 VL - 6B IS - 3 UR - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a17/ LA - en ID - BUMI_2003_8_6B_3_a17 ER -
De Falco, Maria; Musella, Carmela. Some lattice properties of normal-by-finite subgroups. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 763-771. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a17/