Some lattice properties of normal-by-finite subgroups
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 763-771

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A subgroup $H$ of a group $G$ is said to be normal-by-finite if the core $H_{G}$ of $H$ in $G$ has finite index in $H$. It has been proved by Buckley, Lennox, Neumann, Smith and Wiegold that if every subgroup of a group G is normal-by-finite, then $G$ is abelian-by-finite, provided that all its periodic homomorphic images are locally finite. The aim of this article is to describe the structure of groups G for which the partially ordered set $\text{nf}(G)$ consisting of all normal-by-finite subgroups satisfies certain relevant properties.
@article{BUMI_2003_8_6B_3_a17,
     author = {De Falco, Maria and Musella, Carmela},
     title = {Some lattice properties of normal-by-finite subgroups},
     journal = {Bollettino della Unione matematica italiana},
     pages = {763--771},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {3},
     year = {2003},
     zbl = {1119.20031},
     mrnumber = {MR2014832},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a17/}
}
TY  - JOUR
AU  - De Falco, Maria
AU  - Musella, Carmela
TI  - Some lattice properties of normal-by-finite subgroups
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 763
EP  - 771
VL  - 6B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a17/
LA  - en
ID  - BUMI_2003_8_6B_3_a17
ER  - 
%0 Journal Article
%A De Falco, Maria
%A Musella, Carmela
%T Some lattice properties of normal-by-finite subgroups
%J Bollettino della Unione matematica italiana
%D 2003
%P 763-771
%V 6B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a17/
%G en
%F BUMI_2003_8_6B_3_a17
De Falco, Maria; Musella, Carmela. Some lattice properties of normal-by-finite subgroups. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 763-771. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a17/