A spatially inhomogeneous diffusion problem with strong absorption
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 749-761.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study the asymptotic behaviour ($t \to +\infty$) of the solutions of a nonlinear diffusion problem with strong absorption. We prove convergence to the stationary solution in the $L^{\infty}$ by means of an appropriate family of sub and supersolutions. In appendix we prove the well posedness of the problem.
Si studia il comportamento asintotico delle soluzioni di un problema di diffusione non lineare con assorbimento forte. Si dimostra la convergenza alla soluzione stazionaria nella norma $L^{\infty}$ usando una opportuna famiglia di sopra e sottosoluzioni. In appendice si dimostra la buona posizione del problema.
@article{BUMI_2003_8_6B_3_a16,
     author = {Ricci, Riccardo and Tarzia, Domingo A.},
     title = {A spatially inhomogeneous diffusion problem with strong absorption},
     journal = {Bollettino della Unione matematica italiana},
     pages = {749--761},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {3},
     year = {2003},
     zbl = {1178.35207},
     mrnumber = {687037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a16/}
}
TY  - JOUR
AU  - Ricci, Riccardo
AU  - Tarzia, Domingo A.
TI  - A spatially inhomogeneous diffusion problem with strong absorption
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 749
EP  - 761
VL  - 6B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a16/
LA  - en
ID  - BUMI_2003_8_6B_3_a16
ER  - 
%0 Journal Article
%A Ricci, Riccardo
%A Tarzia, Domingo A.
%T A spatially inhomogeneous diffusion problem with strong absorption
%J Bollettino della Unione matematica italiana
%D 2003
%P 749-761
%V 6B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a16/
%G en
%F BUMI_2003_8_6B_3_a16
Ricci, Riccardo; Tarzia, Domingo A. A spatially inhomogeneous diffusion problem with strong absorption. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 749-761. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a16/

[1] A. A. Berezovsky-R. Kersner, On the Stabilization and Localization of Diffusion-Reaction Processes (in Russian), in Nonlinear boundary value problems of mathematical physics and their applications, A. M. Samojlenko and A. A. Berezovsky Eds., Kiev, 1998.

[2] A. A. Berezovsky-R. Kersner-L. A. Peletier, A Free-boundary Problem for a Reaction-Diffusion Equation, preprint

[3] M. Bertsch, A Class of Degenerate Diffusion Equation with a singular nonlinear term, Nonlinear Anal. TMA, 7 (1983), 117-127. | MR | Zbl

[4] E. Comparini-R. Ricci-J. L. Vazquez, Asymptotic Behavior of the Solutions of a Nonlinear Fokker-Plank Equation with Dirichlet Boundary conditions, J. Math. Anal. Appl., 175 (1993), 606-631. | MR | Zbl

[5] J. I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries. I. Elliptic Problems, Res. Notes in Math., 106, Pitman, London (1985). | Zbl

[6] A. Friedman-M. A. Herrero, Extinction Properties of a Semilinear Heat Equation with Strong Absorption, J. Math. Anal. Appl., 124 (1987), 530-546. | MR | Zbl

[7] R. Kersner-F. Nicolosi, The Nonlinear Heat Equation with Absorption: Effects of Variable Coefficients, J. Math. Anal. Appl., 170 (1992), 551-566. | MR | Zbl

[8] O. A. Ladyzenskaja-V. A. Solonnikov-N. N. Ural'Ceva, , Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, Providence R.I., American Mathematical Society (1968). | MR | Zbl

[9] Yu. A. Mitropol'Sky-A. A. Berezovsky, Free and Non-local Boundary Problems in Metallurgy, Medicine, Ecology and Material Sciences, Nat. Acad. Sci. Ukraine, Kiev, 2000. | Zbl

[10] R. Ricci, Large Time Behavior of the Solution of the Heat Equation with Nonlinear Strong Absorption, J. Diff. Equa., 79 (1989), 1-13. | MR | Zbl

[11] R. Ricci-D. A. Tarzia, Asymptotic behaviour of the Solutions of Class of Diffusion-Reaction Equations, in Free Boundary Problems: Theory and Applications, K. H. Hoffmann & J. Sprekels ed.s, Research Notes in Maths, 186 (1990), 719-721.

[12] R. Ricci-D. A. Tarzia, Asymptotic Behavior of the solution of the solution of the dead-core problem, Nonlinear Anal. T.M.A., 13 (1989), 405-411. | MR | Zbl

[13] I. Stakgold, Reaction-diffusion problem in chemical engineering, in «Nonlinear Diffusion Problem» (A. Fasano and M. Primicerio, Eds.), Lect. Notes in Math., 1224, Springer-Verlag, Berlin, 1986. | Zbl