Entire elliptic Hankel convolution equations
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 717-737.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we characterize the entire elliptic Hankel convolutors on tempered distributions in terms of the growth of their Hankel transforms.
In questo lavoro caratterizziamo gli operatori di convoluzione di Hankel ellittici interi su distribuzioni temperate in termini della crescita delle loro trasformate di Hankel.
@article{BUMI_2003_8_6B_3_a14,
     author = {Belhadj, M. and Betancor, J. J.},
     title = {Entire elliptic {Hankel} convolution equations},
     journal = {Bollettino della Unione matematica italiana},
     pages = {717--737},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {3},
     year = {2003},
     zbl = {1179.46036},
     mrnumber = {695127},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a14/}
}
TY  - JOUR
AU  - Belhadj, M.
AU  - Betancor, J. J.
TI  - Entire elliptic Hankel convolution equations
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 717
EP  - 737
VL  - 6B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a14/
LA  - en
ID  - BUMI_2003_8_6B_3_a14
ER  - 
%0 Journal Article
%A Belhadj, M.
%A Betancor, J. J.
%T Entire elliptic Hankel convolution equations
%J Bollettino della Unione matematica italiana
%D 2003
%P 717-737
%V 6B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a14/
%G en
%F BUMI_2003_8_6B_3_a14
Belhadj, M.; Betancor, J. J. Entire elliptic Hankel convolution equations. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 717-737. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a14/

[1] G. Altenburg, Bessel-Transformationen in Räumen von Grundfunktionen über dem Intervall $\Omega = (0,+\infty)$ und deren Dualraumen, Math. Nachr., 108 (1982), 197-218. | MR | Zbl

[2] M. Belhadj-J. J. Betancor, Hankel convolution operators on entire functions and distributions, J. Math. Anal. Appl., 276 (2002), 40-63. | MR | Zbl

[3] J. J. Betancor-I. Marrero, Multipliers of Hankel transformable generalized functions, Comment. Math. Univ. Carolinae, 33 (3) (1992), 389-401. | fulltext mini-dml | MR | Zbl

[4] J. J. Betancor-I. Marrero, The Hankel convolution and the Zemanian spaces $\beta_\mu$ and $\beta'_\mu$, Math. Nachr., 160 (1993), 277-298. | MR | Zbl

[5] J. J. Betancor-I. Marrero, Structure and convergence in certain spaces of distributions and the generalized Hankel convolution, Math. Japonica, 38 (6) (1993), 1141-1155. | MR | Zbl

[6] J. J. Betancor-I. Marrero, Some properties of Hankel convolution operators, Canad. Math. Bull., 36 (4) (1993), 398-406. | MR | Zbl

[7] J. J. Betancor-I. Marrero, On the topology of the space of Hankel convolution operators, J. Math. Anal. Appl., 201 (1996), 994-1001. | MR | Zbl

[8] J. J. Betancor-L. Rodríguez-Mesa, Hankel convolution on distribution spaces with exponential growth, Studia Math., 121 (1) (1996), 35-52. | fulltext mini-dml | MR | Zbl

[9] J. J. Betancor-L. Rodríguez-Mesa, On Hankel convolution equations in distribution spaces, Rocky Mountain J. Math., 29 (1) (1999), 93-114. | fulltext mini-dml | MR | Zbl

[10] F. M. Cholewinski, A Hankel Convolution Complex Inversion Theory, Mem. Amer. Math. Soc., 58 (1965). | MR | Zbl

[11] F. M. Cholewinski, Generalized Fock spaces and associated operators, SIAM J. Math. Anal., 15 (1) (1984), 177-202. | MR | Zbl

[12] S. J. L. Von Eijndhoven-J. De Graaf, Some results on Hankel invariant distribution spaces, Proc. Kon. Ned. Akad. van Wetensch. A, 86 (1) (1983), 77-87. | MR | Zbl

[13] S. J. L. Von Eijndhoven-M. J. Kerkhof, The Hankel transformation and spaces of $W$-type, Reports on Appl. and Numer. Analysis, 10, Dept. of Maths. and Comp. Sci., Eindhoven Univ. of Tech. (1988).

[14] L. Ehrenpreis, Solution of some problem of division, Part IV. Invertible and elliptic operators, Amer. J. Maths., 82 (1960), 522-588. | MR | Zbl

[15] A. Erdélyi, Tables of integral transforms, II, McGraw Hill, New York, 1953.

[16] G. Godefroy-J.H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Functional Anal., 98 (1991), 229-269. | MR | Zbl

[17] D. T. Haimo, Integral equations associated with Hankel convolutions, Trans. Amer. Math. Soc., 116 (1965), 330-375. | MR | Zbl

[18] C. S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. USA, 40 (1954), 996-999. | MR | Zbl

[19] I. I. Jr. Hirschman, Variation diminishing Hankel transforms, J. Analyse Math., 8 (1960/61), 307-336. | MR | Zbl

[20] J. Horvath, Topological Vector Spaces and Distributions, I, Addison-Wesley, Reading, Massachusetts (1966). | MR | Zbl

[21] I. Marrero-J. J. Betancor, Hankel convolution of generalized functions, Rendiconti di Matematica, 15 (1995), 351-380. | MR | Zbl

[22] L. Schwartz, Theorie des distributions, Hermann, Paris, 1978. | MR | Zbl

[23] J. De Sousa-Pinto, A generalized Hankel convolution, SIAM J. Appl. Math., 16 (1985), 1335-1346. | MR | Zbl

[24] K. Triméche, Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur $(0, \infty)$, J. Math. Pures Appl., 60 (9) (1981), 51-98. | MR | Zbl

[25] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1959. | Jbk 48.0412.02 | MR | Zbl

[26] A. H. Zemanian, A distributional Hankel transformation, SIAM J. Appl. Math., 14 (1966), 561-576. | MR | Zbl

[27] A. H. Zemanian, The Hankel transformations of certain distributions of rapid growth, J. SIAM Appl. Math., 14 (4) (1966), 678-690. | MR | Zbl

[28] A. H. Zemanian, Generalized integral transformations, Interscience Publishers, New York, 1968. | MR | Zbl

[29] Z. Zielezny, Hypoelliptic and entire elliptic convolution equations in subspaces of the spaces of distributions (I), Studia Math., 28 (1967), 317-332. | fulltext mini-dml | MR | Zbl