On quasihomogeneous manifolds – via Brion-Luna-Vust theorem
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 531-544
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We consider a smooth projective variety $X$ on which a simple algebraic group $G$ acts with an open orbit. We discuss a theorem of Brion-Luna-Vust in order to relate the action of $G$ with the induced action of $G$ on the normal bundle of a closed orbit of the action. We get effective results in case $G=SL(n)$ and $\dim X \leq 2n-2$.
@article{BUMI_2003_8_6B_3_a1,
author = {Andreatta, Marco and Wi\'sniewski, Jaros{\l}aw A.},
title = {On quasihomogeneous manifolds {\textendash} via {Brion-Luna-Vust} theorem},
journal = {Bollettino della Unione matematica italiana},
pages = {531--544},
publisher = {mathdoc},
volume = {Ser. 8, 6B},
number = {3},
year = {2003},
zbl = {1178.14047},
mrnumber = {MR2014816},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a1/}
}
TY - JOUR AU - Andreatta, Marco AU - Wiśniewski, Jarosław A. TI - On quasihomogeneous manifolds – via Brion-Luna-Vust theorem JO - Bollettino della Unione matematica italiana PY - 2003 SP - 531 EP - 544 VL - 6B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a1/ LA - en ID - BUMI_2003_8_6B_3_a1 ER -
%0 Journal Article %A Andreatta, Marco %A Wiśniewski, Jarosław A. %T On quasihomogeneous manifolds – via Brion-Luna-Vust theorem %J Bollettino della Unione matematica italiana %D 2003 %P 531-544 %V 6B %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a1/ %G en %F BUMI_2003_8_6B_3_a1
Andreatta, Marco; Wiśniewski, Jarosław A. On quasihomogeneous manifolds – via Brion-Luna-Vust theorem. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 531-544. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a1/