On quasihomogeneous manifolds – via Brion-Luna-Vust theorem
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 531-544.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider a smooth projective variety $X$ on which a simple algebraic group $G$ acts with an open orbit. We discuss a theorem of Brion-Luna-Vust in order to relate the action of $G$ with the induced action of $G$ on the normal bundle of a closed orbit of the action. We get effective results in case $G=SL(n)$ and $\dim X \leq 2n-2$.
In questo lavoro si studiano varietà proiettive liscie sulle quali agisce un gruppo algebrico semplice $G$ con una orbita aperta. In particolare si utilizza un teorema di Brion-Luna-Vust per correlare l'azione di $G$ su $X$ con l'azione indotta di $G$ sul fibrato normale di una orbita chiusa. Come applicazione si ottiene una classificazione nel caso $G=SL(n)$ e $\dim X \leq 2n-2$.
@article{BUMI_2003_8_6B_3_a1,
     author = {Andreatta, Marco and Wi\'sniewski, Jaros{\l}aw A.},
     title = {On quasihomogeneous manifolds {\textendash} via {Brion-Luna-Vust} theorem},
     journal = {Bollettino della Unione matematica italiana},
     pages = {531--544},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {3},
     year = {2003},
     zbl = {1178.14047},
     mrnumber = {1824904},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a1/}
}
TY  - JOUR
AU  - Andreatta, Marco
AU  - Wiśniewski, Jarosław A.
TI  - On quasihomogeneous manifolds – via Brion-Luna-Vust theorem
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 531
EP  - 544
VL  - 6B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a1/
LA  - en
ID  - BUMI_2003_8_6B_3_a1
ER  - 
%0 Journal Article
%A Andreatta, Marco
%A Wiśniewski, Jarosław A.
%T On quasihomogeneous manifolds – via Brion-Luna-Vust theorem
%J Bollettino della Unione matematica italiana
%D 2003
%P 531-544
%V 6B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a1/
%G en
%F BUMI_2003_8_6B_3_a1
Andreatta, Marco; Wiśniewski, Jarosław A. On quasihomogeneous manifolds – via Brion-Luna-Vust theorem. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 531-544. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a1/

[Ak] D. N. Akhiezer, Homogeneous Complex Manifolds, Encyclopedia of Mathematical Science, 10 (1990), Springer-Verlag, 195-244. | Zbl

[An] M. Andreatta, Actions of linear algebraic groups on projective manifolds and minimal model program, Osaka J. of Math., 38 (2001), 151-166. | fulltext mini-dml | MR | Zbl

[Bor] A. Borel, Linear Algebraic Groups, II enlarged edition, Springer GTM, 126 (1991). | MR | Zbl

[Bou] N. Bourbaki, Groups et algébres de Lie, Chap. IV,V, VI, 2éme edition, Masson, Paris (1981). | MR

[Br] M. Brion, On spherical varieties of rank one, Proc. 1988-Montreal Conference on Group Actions and Invariant Theory, CMS Conf. Proc., 10 (1989), 31-42. | MR | Zbl

[B-L-V] M. Brion-D. Luna-Th. Vust, Espaces Homogènes Sphériques, Inventiones Math., 84 (1986), 617-632. | MR | Zbl

[Lu] D. Luna, Slices étales, Bull. Soc. Math. France, Memoire, 33 (1973), 81-105. | fulltext mini-dml | MR | Zbl

[L-V] D. Luna-Th. Vust, Plongements d'espaces homogènes, Comment. Math. Helv., 58 (1983), 186-245. | MR | Zbl

[Ma] T. Mabuchi, On the classification of essentially effective $SL(n)$-actions on algebraic $n$-folds, Osaka J. Math., 16 (1979), 707-757. | Zbl

[M-U] S. Mukai-H. Umemura, Minimal rational threefolds, Lect. Notes in Math., 1016, Springer Verlag (1983), 490-518. | MR | Zbl

[Na1] T. Nakano, On equivariant completions of 3-dimensional homogeneous spaces of $SL(2,\mathbb{C})$, Japanese J. of Math., 15 (1989), 221-273. | MR | Zbl

[Na2] T. Nakano, On quasi-homogeneous fourfolds of $SL(3,\mathbb{C})$, Osaka J. Math., 29 (1992), 719-733. | fulltext mini-dml | MR | Zbl

[O-S-S] C. Okonek-M. Schneider-H. Spindler, Vector bundles on complex projective spaces, Progress in Math. 3, Birkhäuser 1980. | MR | Zbl

[S-W] M. Szurek-J. A. Wiśniewski, On Fano manifolds, which are $\mathbf{P}^k$-bundles over $\mathbf{P}^2$, Nagoya Math. J., 120 (1990), 89-101. | fulltext mini-dml | MR | Zbl

[Sl] P. Slodowy, Simple singularities and simple algebraic groups, Springer Lecture Notes in Math., 815 (1980). | MR | Zbl

[Ti] J. Tits, Sur certaines classes d'espaces homogenés de groups de Lie, Mem. Ac. Roy. Belg., 29 (1955). | MR | Zbl