On quasihomogeneous manifolds – via Brion-Luna-Vust theorem
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 531-544

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider a smooth projective variety $X$ on which a simple algebraic group $G$ acts with an open orbit. We discuss a theorem of Brion-Luna-Vust in order to relate the action of $G$ with the induced action of $G$ on the normal bundle of a closed orbit of the action. We get effective results in case $G=SL(n)$ and $\dim X \leq 2n-2$.
@article{BUMI_2003_8_6B_3_a1,
     author = {Andreatta, Marco and Wi\'sniewski, Jaros{\l}aw A.},
     title = {On quasihomogeneous manifolds {\textendash} via {Brion-Luna-Vust} theorem},
     journal = {Bollettino della Unione matematica italiana},
     pages = {531--544},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {3},
     year = {2003},
     zbl = {1178.14047},
     mrnumber = {MR2014816},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a1/}
}
TY  - JOUR
AU  - Andreatta, Marco
AU  - Wiśniewski, Jarosław A.
TI  - On quasihomogeneous manifolds – via Brion-Luna-Vust theorem
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 531
EP  - 544
VL  - 6B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a1/
LA  - en
ID  - BUMI_2003_8_6B_3_a1
ER  - 
%0 Journal Article
%A Andreatta, Marco
%A Wiśniewski, Jarosław A.
%T On quasihomogeneous manifolds – via Brion-Luna-Vust theorem
%J Bollettino della Unione matematica italiana
%D 2003
%P 531-544
%V 6B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a1/
%G en
%F BUMI_2003_8_6B_3_a1
Andreatta, Marco; Wiśniewski, Jarosław A. On quasihomogeneous manifolds – via Brion-Luna-Vust theorem. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 3, pp. 531-544. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_3_a1/