The Poincaré lemma and local embeddability
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 393-398
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
For pseudocomplex abstract $CR$ manifolds, the validity of the Poincaré Lemma for $(0,1)$ forms implies local embeddability in $\mathbb{C}^{N}$. The two properties are equivalent for hypersurfaces of real dimension $\geq 5$. As a corollary we obtain a criterion for the non validity of the Poicaré Lemma for $(0,1)$ forms for a large class of abstract $CR$ manifolds of $CR$ codimension larger than one.
@article{BUMI_2003_8_6B_2_a7,
author = {Brinkschulte, Judith and Hill, C. Denson and Nacinovich, Mauro},
title = {The {Poincar\'e} lemma and local embeddability},
journal = {Bollettino della Unione matematica italiana},
pages = {393--398},
publisher = {mathdoc},
volume = {Ser. 8, 6B},
number = {2},
year = {2003},
zbl = {1150.32010},
mrnumber = {MR1988212},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_2_a7/}
}
TY - JOUR AU - Brinkschulte, Judith AU - Hill, C. Denson AU - Nacinovich, Mauro TI - The Poincaré lemma and local embeddability JO - Bollettino della Unione matematica italiana PY - 2003 SP - 393 EP - 398 VL - 6B IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_2_a7/ LA - en ID - BUMI_2003_8_6B_2_a7 ER -
%0 Journal Article %A Brinkschulte, Judith %A Hill, C. Denson %A Nacinovich, Mauro %T The Poincaré lemma and local embeddability %J Bollettino della Unione matematica italiana %D 2003 %P 393-398 %V 6B %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_2_a7/ %G en %F BUMI_2003_8_6B_2_a7
Brinkschulte, Judith; Hill, C. Denson; Nacinovich, Mauro. The Poincaré lemma and local embeddability. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 393-398. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_2_a7/