$\Gamma$-convergence of constrained Dirichlet functionals
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 339-351
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Given an open, bounded and connected set $\Omega\subset \mathbb{R}^{n}$ with Lipschitz boundary and volume $|\Omega|$, we prove that the sequence $\mathcal{F}_{k}$ of Dirichlet functionals defined on $H^{1}(\Omega; \mathbb{R}^{d})$, with volume constraints $v^{k}$ on $m\geq2$ fixed level-sets, and such that $\sum_{i=1}^{m}v_{i}^{k} |\Omega|$ for all $k$, $\Gamma$-converges, as $v^{k}\rightarrow v$ with $\sum_{i=1}^{m}v_{i}^{k}=|\Omega|$, to the squared total variation on $BV(V; \mathbb{R}^{d})$, with $v$ as volume constraint on the same level-sets.
@article{BUMI_2003_8_6B_2_a4,
author = {Leonardi, Gian Paolo},
title = {$\Gamma$-convergence of constrained {Dirichlet} functionals},
journal = {Bollettino della Unione matematica italiana},
pages = {339--351},
publisher = {mathdoc},
volume = {Ser. 8, 6B},
number = {2},
year = {2003},
zbl = {1177.49026},
mrnumber = {MR1988209},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_2_a4/}
}
Leonardi, Gian Paolo. $\Gamma$-convergence of constrained Dirichlet functionals. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 339-351. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_2_a4/