Non-Markovian quadratic forms obtained by homogenization
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 323-337
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
This paper is devoted to the asymptotic behaviour of quadratic forms defined on $L^{2}$. More precisely we consider the $\Gamma$-convergence of these functionals for the $L^{2}$-weak topology. We give an example in which some limit forms are not Markovian and hence the Beurling-Deny representation formula does not hold. This example is obtained by the homogenization of a stratified medium composed of insulating thin-layers.
@article{BUMI_2003_8_6B_2_a3,
author = {Briane, Marc},
title = {Non-Markovian quadratic forms obtained by homogenization},
journal = {Bollettino della Unione matematica italiana},
pages = {323--337},
publisher = {mathdoc},
volume = {Ser. 8, 6B},
number = {2},
year = {2003},
zbl = {1150.35009},
mrnumber = {MR1988208},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_2_a3/}
}
Briane, Marc. Non-Markovian quadratic forms obtained by homogenization. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 323-337. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_2_a3/