Links between $\Delta(x,N) = {\displaystyle \sum_{{n \leq xN, \,\, (n,N)=1}}} 1-x\phi(N)$ and character sums
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 509-516
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We express $\Delta(x, N)$, as defined in the title, for $x=\frac{a}{q}$ and $q$ prime in terms of values of characters modulo $q$. Using this, we show that the universal lower bound for $\Delta(N)= \sup_{x\in \mathbb{R}} |\Delta (x,N)|$ can, in general, be substantially improved when $N$ is composed of primes lying in a fixed residue class modulo $q$. We also prove a corresponding improvement when $N$ is the product of the first s primes for infinitely many natural numbers $s$.
@article{BUMI_2003_8_6B_2_a14,
author = {Codec\'a, P. and Nair, M.},
title = {Links between $\Delta(x,N) = {\displaystyle \sum_{{n \leq xN, \,\, (n,N)=1}}} 1-x\phi(N)$ and character sums},
journal = {Bollettino della Unione matematica italiana},
pages = {509--516},
publisher = {mathdoc},
volume = {Ser. 8, 6B},
number = {2},
year = {2003},
zbl = {1177.11079},
mrnumber = {MR1988219},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_2_a14/}
}
TY - JOUR
AU - Codecá, P.
AU - Nair, M.
TI - Links between $\Delta(x,N) = {\displaystyle \sum_{{n \leq xN, \,\, (n,N)=1}}} 1-x\phi(N)$ and character sums
JO - Bollettino della Unione matematica italiana
PY - 2003
SP - 509
EP - 516
VL - 6B
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_2_a14/
LA - en
ID - BUMI_2003_8_6B_2_a14
ER -
%0 Journal Article
%A Codecá, P.
%A Nair, M.
%T Links between $\Delta(x,N) = {\displaystyle \sum_{{n \leq xN, \,\, (n,N)=1}}} 1-x\phi(N)$ and character sums
%J Bollettino della Unione matematica italiana
%D 2003
%P 509-516
%V 6B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_2_a14/
%G en
%F BUMI_2003_8_6B_2_a14
Codecá, P.; Nair, M. Links between $\Delta(x,N) = {\displaystyle \sum_{{n \leq xN, \,\, (n,N)=1}}} 1-x\phi(N)$ and character sums. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 509-516. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_2_a14/