The $p$-Laplacian in domains with small random holes
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 435-458
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We investigate sequences of nonlinear Dirichlet problems of the form \begin{equation*} \tag{$P_h$} \begin{cases} -\text{div}\,(|Du_{h}|^{p-2} Du_{h})=g, \ \text{in } D \setminus E_{h} \\ u_{h}\in H^{1,p}_{0}(D \setminus E_{h}). \end{cases} \end{equation*} where $2\leq p \leq n$ and $E_{h}$ are random subsets of a bounded open set $D$ of $\mathbb{R}^{n}$$(n\geq 2)$. By means of a variational approach, we study the asymptotic behaviour of solutions of $(P_h)$, characterizing the limit problem for suitable sequences of random sets.
@article{BUMI_2003_8_6B_2_a10,
author = {Balzano, M. and Durante, T.},
title = {The $p${-Laplacian} in domains with small random holes},
journal = {Bollettino della Unione matematica italiana},
pages = {435--458},
publisher = {mathdoc},
volume = {Ser. 8, 6B},
number = {2},
year = {2003},
zbl = {1177.35061},
mrnumber = {MR1988215},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_2_a10/}
}
TY - JOUR AU - Balzano, M. AU - Durante, T. TI - The $p$-Laplacian in domains with small random holes JO - Bollettino della Unione matematica italiana PY - 2003 SP - 435 EP - 458 VL - 6B IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_2_a10/ LA - en ID - BUMI_2003_8_6B_2_a10 ER -
Balzano, M.; Durante, T. The $p$-Laplacian in domains with small random holes. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 2, pp. 435-458. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_2_a10/