Star-invertible ideals of integral domains
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 141-150
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let $\ast$ be a star-operation on $R$ and $\ast_{s}$ the finite character star-operation induced by $\ast$. The purpose of this paper is to study when $\ast=v$ or $\ast_{s}=t$. In particular, we prove that if every prime ideal of $R$ is $\ast$-invertible, then $\ast=v$, and that if $R$ is a unique $\ast$-factorable domain, then $R$ is a Krull domain.
@article{BUMI_2003_8_6B_1_a7,
author = {Chang, Gyu Whan and Park, Jeanam},
title = {Star-invertible ideals of integral domains},
journal = {Bollettino della Unione matematica italiana},
pages = {141--150},
publisher = {mathdoc},
volume = {Ser. 8, 6B},
number = {1},
year = {2003},
zbl = {1177.13006},
mrnumber = {MR1955701},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a7/}
}
Chang, Gyu Whan; Park, Jeanam. Star-invertible ideals of integral domains. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 141-150. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a7/