Star-invertible ideals of integral domains
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 141-150

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $\ast$ be a star-operation on $R$ and $\ast_{s}$ the finite character star-operation induced by $\ast$. The purpose of this paper is to study when $\ast=v$ or $\ast_{s}=t$. In particular, we prove that if every prime ideal of $R$ is $\ast$-invertible, then $\ast=v$, and that if $R$ is a unique $\ast$-factorable domain, then $R$ is a Krull domain.
@article{BUMI_2003_8_6B_1_a7,
     author = {Chang, Gyu Whan and Park, Jeanam},
     title = {Star-invertible ideals of integral domains},
     journal = {Bollettino della Unione matematica italiana},
     pages = {141--150},
     publisher = {mathdoc},
     volume = {Ser. 8, 6B},
     number = {1},
     year = {2003},
     zbl = {1177.13006},
     mrnumber = {MR1955701},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a7/}
}
TY  - JOUR
AU  - Chang, Gyu Whan
AU  - Park, Jeanam
TI  - Star-invertible ideals of integral domains
JO  - Bollettino della Unione matematica italiana
PY  - 2003
SP  - 141
EP  - 150
VL  - 6B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a7/
LA  - en
ID  - BUMI_2003_8_6B_1_a7
ER  - 
%0 Journal Article
%A Chang, Gyu Whan
%A Park, Jeanam
%T Star-invertible ideals of integral domains
%J Bollettino della Unione matematica italiana
%D 2003
%P 141-150
%V 6B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a7/
%G en
%F BUMI_2003_8_6B_1_a7
Chang, Gyu Whan; Park, Jeanam. Star-invertible ideals of integral domains. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 141-150. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a7/