Towards the determination of the regular $n$-covers of $PG(3,q)$
Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 57-87
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
A set of lines $S$ of $PG(3, q)$ is said to cover a point $P$ of $PG(3, q)$$n$ times if there are exactly $n$ lines of $S$ incident with $P$. An $n$-cover of $PG(3, q)$ is a set of lines of $PG(3, q)$ which covers each point of $PG(3, q)$$n$ times. In this paper, the properties and known examples of $n$-covers are reviewed and it is demonstrated how $n$-covers of $PG(3, q)$ can be used to construct classes of quasi-$n$-multiple Sperner designs. Finally, motivated by the problem of deriving these designs to arrive at new examples, the notion of regular $n$-covers of $PG(3, q)$ is introduced. The main results of the paper are that no regular $2$-covers of $PG(3, q)$ exist for $q>2$ and that no regular $n$-covers $(n\geq 3)$ exist whenever $q\geq n+2$.
@article{BUMI_2003_8_6B_1_a3,
author = {Oxenham, Martin and Casse, Rey},
title = {Towards the determination of the regular $n$-covers of $PG(3,q)$},
journal = {Bollettino della Unione matematica italiana},
pages = {57--87},
publisher = {mathdoc},
volume = {Ser. 8, 6B},
number = {1},
year = {2003},
zbl = {1177.51007},
mrnumber = {MR1955697},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a3/}
}
TY - JOUR AU - Oxenham, Martin AU - Casse, Rey TI - Towards the determination of the regular $n$-covers of $PG(3,q)$ JO - Bollettino della Unione matematica italiana PY - 2003 SP - 57 EP - 87 VL - 6B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a3/ LA - en ID - BUMI_2003_8_6B_1_a3 ER -
Oxenham, Martin; Casse, Rey. Towards the determination of the regular $n$-covers of $PG(3,q)$. Bollettino della Unione matematica italiana, Série 8, 6B (2003) no. 1, pp. 57-87. http://geodesic.mathdoc.fr/item/BUMI_2003_8_6B_1_a3/